datascientist22 commited on
Commit
4b00165
·
verified ·
1 Parent(s): c360697

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +71 -0
app.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
3
+
4
+ # Load the tokenizer and model
5
+ tokenizer = AutoTokenizer.from_pretrained("MohamedMotaz/Examination-llama-8b-4bit")
6
+ model = AutoModelForCausalLM.from_pretrained("MohamedMotaz/Examination-llama-8b-4bit")
7
+ pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
8
+
9
+ # App Title
10
+ st.title("Exam Corrector: Automated Grading with LLama 8b Model")
11
+
12
+ # Instructions
13
+ st.markdown("""
14
+ ### Instructions:
15
+ - Upload or type both the **Model Answer** and the **Student Answer**.
16
+ - Click on the **Grade Answer** button to get the grade and explanation.
17
+ """)
18
+
19
+ # Input fields for Model Answer and Student Answer
20
+ model_answer = st.text_area("Model Answer", "The process of photosynthesis involves converting light energy into chemical energy.")
21
+ student_answer = st.text_area("Student Answer", "Photosynthesis is when plants turn light into energy.")
22
+
23
+ # Display documentation in the app
24
+ with st.expander("Click to View Documentation"):
25
+ st.markdown("""
26
+ ## Exam-Corrector: A Fine-tuned LLama 8b Model
27
+
28
+ Exam-corrector is a fine-tuned version of the LLama 8b model, specifically adapted to function as a written question corrector. This model grades student answers by comparing them against model answers using predefined instructions.
29
+
30
+ ### Model Description:
31
+ The model ensures consistent and fair grading for written answers. Full marks are given to student answers that convey the complete meaning of the model answer, even with different wording.
32
+
33
+ ### Grading Instructions:
34
+ - Model Answer is only used as a reference and does not receive marks.
35
+ - Full marks are awarded when student answers convey the full meaning of the model answer.
36
+ - Partial marks are deducted for incomplete or irrelevant information.
37
+
38
+ ### Input Format:
39
+ - **Model Answer**: {model_answer}
40
+ - **Student Answer**: {student_answer}
41
+
42
+ ### Output Format:
43
+ - **Grade**: {grade}
44
+ - **Explanation**: {explanation}
45
+
46
+ ### Training Details:
47
+ - Fine-tuned with LoRA (Low-Rank Adaptation).
48
+ - Percentage of trainable model parameters: 3.56%.
49
+ """)
50
+
51
+ # Button to trigger grading
52
+ if st.button("Grade Answer"):
53
+ # Combine inputs into the required prompt format
54
+ inputs = f"Model Answer: {model_answer}\n\nStudent Answer: {student_answer}\n\nResponse:"
55
+
56
+ # Tokenize the inputs
57
+ input_ids = tokenizer(inputs, return_tensors="pt").input_ids
58
+
59
+ # Generate the response using the model
60
+ outputs = model.generate(input_ids)
61
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
62
+
63
+ # Display the grade and explanation
64
+ st.subheader("Grading Results")
65
+ st.write(response)
66
+
67
+ # Footer and app creator details
68
+ st.markdown("""
69
+ ---
70
+ **App created by [Engr. Hamesh Raj](https://www.linkedin.com/in/hamesh-raj)**
71
+ """)