import cv2 import gradio as gr import mediapipe as mp mp_drawing = mp.solutions.drawing_utils mp_drawing_styles = mp.solutions.drawing_styles mp_hands = mp.solutions.hands def fun(img): print(type(img)) with mp_hands.Hands( model_complexity=0, min_detection_confidence=0.5, min_tracking_confidence=0.5 ) as hands: img.flags.writeable = False image = cv2.flip(img[:, :, ::-1], 1) # Convert the BGR image to RGB before processing. results = hands.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) image.flags.writeable = True if results.multi_hand_landmarks: for hand_landmarks in results.multi_hand_landmarks: mp_drawing.draw_landmarks( image, hand_landmarks, mp_hands.HAND_CONNECTIONS, mp_drawing_styles.get_default_hand_landmarks_style(), mp_drawing_styles.get_default_hand_connections_style() ) return cv2.flip(image[:, :, ::-1], 1) with gr.Blocks(title="Realtime Keypoint Detection | Data Science Dojo", css="footer {display:none !important} .output-markdown{display:none !important}") as demo: with gr.Row(): with gr.Column(): webcam_input = gr.Video(label="Webcam Input", format="mp4") # Webcam input with gr.Column(): output = gr.Image(label="Output Image") webcam_input.stream( fn=fun, inputs=webcam_input, outputs=output ) demo.launch(debug=True)