datasciencedojo's picture
fix source issue
292c4d1 verified
raw
history blame
1.57 kB
import cv2
import gradio as gr
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.hands
def fun(img):
print(type(img))
with mp_hands.Hands(
model_complexity=0,
min_detection_confidence=0.5,
min_tracking_confidence=0.5
) as hands:
img.flags.writeable = False
image = cv2.flip(img[:, :, ::-1], 1)
# Convert the BGR image to RGB before processing.
results = hands.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
image.flags.writeable = True
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
image,
hand_landmarks,
mp_hands.HAND_CONNECTIONS,
mp_drawing_styles.get_default_hand_landmarks_style(),
mp_drawing_styles.get_default_hand_connections_style()
)
return cv2.flip(image[:, :, ::-1], 1)
with gr.Blocks(title="Realtime Keypoint Detection | Data Science Dojo", css="footer {display:none !important} .output-markdown{display:none !important}") as demo:
with gr.Row():
with gr.Column():
webcam_input = gr.Video(label="Webcam Input", format="mp4") # Webcam input
with gr.Column():
output = gr.Image(label="Output Image")
webcam_input.stream(
fn=fun,
inputs=webcam_input,
outputs=output
)
demo.launch(debug=True)