teaching_arithmetic / Dockerfile
meg's picture
meg HF staff
Update Dockerfile
7d2db2d verified
# Documentation: https://huggingface.co/docs/hub/spaces-sdks-docker
FROM python:3.9
# Create a non-root user and allow them to have appropriate permissions
# on our Space content
RUN useradd -m -u 1000 user
COPY --chown=user ./requirements.txt /requirements.txt
COPY --chown=user ./train.sh /train.sh
COPY --chown=user ./upload_results.py /upload_results.py
COPY --chown=user ./pause_space.py /pause_space.py
RUN chmod +x /train.sh
# May not need to do this. Just tired of permissions errors and going wild.
RUN chmod +x /upload_results.py
RUN chmod +x /pause_space.py
# Make the working directory for user.
RUN mkdir /app
# Start installing stuff as root so it doesn't complain about install permissions.
#RUN pip install --no-cache-dir --upgrade pip
RUN pip install --no-cache-dir --upgrade -r /requirements.txt
# Clone into the working directory for the user.
RUN git clone https://github.com/lee-ny/teaching_arithmetic.git /app/teaching_arithmetic
#&& cd teaching_arithmetic && pip install -e .
# Copy all files we have into the user's working directory.
COPY --chown=user . /app
# Kept getting permission denied errors when running train.py, which tries to
# create the out directory. Just doing this to try to help that.
RUN mkdir /app/teaching_arithmetic/out
RUN chmod -R 777 /app/
# Switch to the user profile.
# This will help make sure the permissions of the cloned git stuff
# don't require root privileges (I am guessing).
USER user
# Switch to the /app working directory.
WORKDIR /app
# Permissions. Permissions. Already did this. Doing it again anyway.
RUN chmod +x train.sh
RUN chmod +x upload_results.py
RUN chmod +x pause_space.py
# Expose the secret so it can be used later.
RUN --mount=type=secret,id=DATACOMP_TOKEN
#,mode=0444,required=true \
# Could also use CMD. Example:
# CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
ENTRYPOINT ["/train.sh"]
# Keeping these as FYI, commented out, as they are other things we could do.
#ENV PATH="/home/user/.local/bin:/opt/conda/bin:$PATH"
#ENV HOME="/home/user"
#WORKDIR $HOME/app
# We now install with requirements.txt
#ARG PYTORCH_VERSION=2.1.0
#ARG PYTHON_VERSION=3.9 #8.10
#ARG CUDA_VERSION=11.8
#ARG CU_DNN=8.5.0.96
#ARG MAMBA_VERSION=24.3.0-0
#ARG CUDA_CHANNEL=nvidia
#ARG INSTALL_CHANNEL=pytorch
# Automatically set by buildx
#ARG TARGETPLATFORM
# Updating basic dependencies we'll be using.
#RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
# build-essential \
# ca-certificates \
# ccache \
# curl \
# python3 \
# python3-pip \
# git && \
# rm -rf /var/lib/apt/lists/*
# Installing conda, translating Docker's TARGETPLATFORM into mamba arches
#RUN case ${TARGETPLATFORM} in \
# "linux/arm64") MAMBA_ARCH=aarch64 ;; \
# *) MAMBA_ARCH=x86_64 ;; \
# esac && \
# curl -fsSL -v -o ~/mambaforge.sh -O "https://github.com/conda-forge/miniforge/releases/download/${MAMBA_VERSION}/Mambaforge-${MAMBA_VERSION}-Linux-${MAMBA_ARCH}.sh"
#RUN chmod +x ~/mambaforge.sh && \
# bash ~/mambaforge.sh -b -p /opt/conda && \
# rm ~/mambaforge.sh
# Installing pytorch
# On arm64 we exit with an error code
#RUN case ${TARGETPLATFORM} in \
# "linux/arm64") exit 1 ;; \
# *) /opt/conda/bin/conda update -y conda && \
# /opt/conda/bin/conda install -c "${INSTALL_CHANNEL}" -c "${CUDA_CHANNEL}" -y "python=${PYTHON_VERSION}" "pytorch=$PYTORCH_VERSION" "pytorch-cuda=$(echo $CUDA_VERSION | cut -d'.' -f 1-2)" ;; \
# esac && \
# /opt/conda/bin/conda clean -ya
# Expose the secret DEBUG at buildtime and use its value as git remote URL
#RUN --mount=type=secret,id=DEBUG,mode=0444,required=true \
# git init && \
# git remote add origin $(cat /run/secrets/DEBUG)