emsland-bot / app.py
dpleus
readme
0486b97
from haystack.components.embedders import SentenceTransformersTextEmbedder
from haystack import Pipeline
from haystack_integrations.components.retrievers.chroma import ChromaEmbeddingRetriever
from haystack_integrations.document_stores.chroma import ChromaDocumentStore
from haystack.components.generators import OpenAIGenerator
from haystack.components.builders import PromptBuilder
import haystack.logging
import streamlit as st
from dotenv import load_dotenv
from haystack import component
import logging
haystack.logging.configure_logging(use_json=True)
logging.basicConfig(
format="%(levelname)s - %(name)s - %(message)s", level=logging.WARNING
)
logging.getLogger("haystack").setLevel(logging.INFO)
load_dotenv()
@component
class ListToString:
@component.output_types(text=str)
def run(self, input_list: list[str]):
print(input_list[0])
return {"text": input_list[0]}
@st.cache_resource
def retrieval_pipeline(path):
document_store = ChromaDocumentStore(persist_path=path)
retriever = ChromaEmbeddingRetriever(document_store, top_k=5)
template = """Transform this query into a imaginary response that the
user could expect based on your knowledge. Use 1-3 sentences. Replace
entities or names that you invent with <axz>. The result should be in
German.
Query: {{
query}}"""
prompt_builder = PromptBuilder(template=template)
generator = OpenAIGenerator()
# Create a pipeline
basic_rag_pipeline = Pipeline()
# Add components to your pipeline
basic_rag_pipeline.add_component("prompt_builder", prompt_builder)
basic_rag_pipeline.add_component("generator", generator)
basic_rag_pipeline.add_component("list_to_string", ListToString())
basic_rag_pipeline.add_component("retriever", retriever)
basic_rag_pipeline.add_component(
"text_embedder",
SentenceTransformersTextEmbedder(model="intfloat/multilingual-e5-small"),
)
basic_rag_pipeline.connect("prompt_builder", "generator")
basic_rag_pipeline.connect("generator.replies", "list_to_string.input_list")
basic_rag_pipeline.connect("list_to_string.text", "text_embedder.text")
basic_rag_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
return basic_rag_pipeline
def generation_pipeline():
template = """
Given the following information, answer the question.
Context:
{% for document in documents %}
{{ document.content }}
{% endfor %}
Bleibe chronologisch. Erkläre Konzepte und Begriffe wenn nötig.
Question: {{question}}
Answer:
"""
prompt_builder = PromptBuilder(template=template)
generator = OpenAIGenerator(model="gpt-4")
# Create a pipeline
basic_rag_pipeline = Pipeline()
basic_rag_pipeline.add_component("prompt_builder", prompt_builder)
basic_rag_pipeline.add_component("llm", generator)
basic_rag_pipeline.connect("prompt_builder", "llm")
return basic_rag_pipeline
retrieval_pipe = retrieval_pipeline("chatbot/chromadb")
generation_pipe = generation_pipeline()
prompt = st.chat_input("Say something")
if prompt:
response = retrieval_pipe.run({"prompt_builder": {"query": prompt}})
st.markdown("### Sources")
st.write(response["retriever"]["documents"])
answer = generation_pipe.run(
{
"prompt_builder": {
"question": prompt,
"documents": response["retriever"]["documents"],
}
}
)
st.markdown("### Answer")
st.write(answer["llm"]["replies"][0])