File size: 8,067 Bytes
f73dc21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import urllib.request, urllib.error, urllib.parse
import json
import pandas as pd
import ssl
import torch
from pprint import pprint
from captum.attr import visualization

REST_URL = "http://data.bioontology.org"
API_KEY = "604a90bc-ef14-4c26-a347-f4928fa086ea"
ssl._create_default_https_context = ssl._create_unverified_context

class PyTMinMaxScalerVectorized(object):
    """
    From https://discuss.pytorch.org/t/using-scikit-learns-scalers-for-torchvision/53455
    Transforms each channel to the range [0, 1].
    """
    def __call__(self, tensor):
        scale = 1.0 / (tensor.max(dim=0, keepdim=True)[0] - tensor.min(dim=0, keepdim=True)[0]) 
        tensor.mul_(scale).sub_(tensor.min(dim=0, keepdim=True)[0])
        return tensor

def get_drg_link(drg_code):
    return f'https://www.aapc.com/codes/icd9-codes/{drg_code}'

def prettify(dict_list, k):
    li = [di[k] for di in dict_list]
    result = "\n".join(l for l in li)
    return result

def get_json(text_to_annotate):
    url = REST_URL + "/annotator?text=" + urllib.parse.quote(text_to_annotate) + "&ontologies=ICD9CM" +\
        "&longest_only=false" + "&exclude_numbers=false" + "&whole_word_only=true" + '&exclude_synonyms=false'
    opener = urllib.request.build_opener()
    opener.addheaders = [('Authorization', 'apikey token=' + API_KEY)]
    try:
        return json.loads(opener.open(url).read())
    except:
        return []

def parse_results(results):
    if len(results) == 0:
        return []
    rlist = []
    for result in results:
        annotations = result['annotations']
        for annotation in annotations:
            start = annotation['from']-1
            end = annotation['to'] - 1
            text = annotation['text']
            rlist.append({
                'start': start,
                'end': end,
                'text': text,
                'link': result['annotatedClass']['@id']
            })
    return rlist

def get_icd_annotations(text):
    response = get_json(text)
    annotation_list = parse_results(response)
    return annotation_list

def subfinder(mylist, pattern):
    mylist = mylist.tolist()
    pattern = pattern.tolist()
    return list(filter(lambda x: x in pattern, mylist))

def tokenize_icds(tokenizer, annotations, token_ids):
    icd_tokens = torch.zeros(token_ids.shape)
    for annotation in annotations:
        icd = annotation['text']
        icd_token_ids = tokenizer(icd, add_special_tokens=False, return_tensors='pt').input_ids[0]
        # find index of the beginning icd token
        starting_indices = (token_ids==icd_token_ids[0]).nonzero(as_tuple=False)
        num_icd_tokens = icd_token_ids.shape[0]

        # if there's more than 1 icd token for the given annotation
        if num_icd_tokens > 1:
            # if there's only one starting index
            if starting_indices.shape[0] == 1:
                starting_index = starting_indices.item()
                icd_tokens[starting_index: starting_index + num_icd_tokens] = 1
            # if there's more than 1 starting index, determine which is the appropriate
            else:
                for starting_index in starting_indices:
                    if token_ids[starting_index + num_icd_tokens] == icd_token_ids:
                        icd_tokens[starting_index: starting_index + num_icd_tokens] = 1
        
        # otherwise, set the corresponding index to a value of 1
        else:
            icd_tokens[starting_indices] = 1
    return icd_tokens

def get_attribution(text, tokenizer, model_outputs, inputs, k=7):
    tokens = tokenizer.convert_ids_to_tokens(inputs.input_ids[0])
    padding_idx = tokens.index('[PAD]')
    tokens = tokens[:padding_idx][1:-1]
    attn = model_outputs[-1][0]
    agg_attn, final_text = reconstruct_text(tokenizer=tokenizer, tokens=tokens, attn=attn)
    return agg_attn, final_text
    
def reconstruct_text(tokenizer, tokens, attn):
    """
    find a word -> token_id mapping that allows you to
    perform an aggregation on the sub-tokens' attention
    values
    """
    reconstructed_text = tokenizer.convert_tokens_to_string(tokens)
    num_subtokens = len([t for t in tokens if t.startswith('#')])
    aggregated_attn = torch.zeros(len(tokens) - num_subtokens)
    token_indices = [0]
    token_idx = 0
    reconstructed_tokens = []
    for i, token in enumerate(tokens[1:], start=1):
        # case when a token is a subtoken
        if token.startswith('#'):
            token_indices.append(i)    
        else:
            # reconstruct the tokens to make sure you're doing this correctly
            reconstructed_token = ''.join(tokens[i].replace('#', '') for i in token_indices)
            reconstructed_tokens.append(reconstructed_token)
            # find the corresponding attention vectors
            aggregated_attn[token_idx] = torch.mean(attn[token_indices])
            # create new index list
            token_indices = [i]
            token_idx += 1
    # reconstruct the tokens to make sure you're doing this correctly
    reconstructed_token = ''.join(tokens[i].replace('#', '') for i in token_indices)
    reconstructed_tokens.append(reconstructed_token)
    # find the corresponding attention vectors
    aggregated_attn[token_idx] = torch.mean(attn[token_indices])   

    # final representation of text
    final_text = ' '.join(reconstructed_tokens).replace(' .', '.')
    final_text = final_text.replace(' ,', ',')
    assert final_text == reconstructed_text
    return aggregated_attn, reconstructed_tokens

def load_rule(path):
    rule_df = pd.read_csv(path)
    
    # remove MDC 15 - neonate and couple other codes related to postcare
    if 'MS' in path:
        msk = (rule_df['MDC']!='15') & (~rule_df['MS-DRG'].isin([945, 946, 949, 950, 998, 999])) 
        space = sorted(rule_df[msk]['DRG_CODE'].unique())
    elif 'APR' in path:
        msk = (rule_df['MDC']!='15') & (~rule_df['APR-DRG'].isin([860, 863])) 
        space = sorted(rule_df[msk]['DRG_CODE'].unique())
        
    drg2idx = {}
    for d in space:
        drg2idx[d] = len(drg2idx)
    i2d = {v:k for k,v in drg2idx.items()}

    d2mdc, d2w = {}, {}
    for _, r in rule_df.iterrows():
        drg = r['DRG_CODE']
        mdc = r['MDC']
        w = r['WEIGHT']
        d2mdc[drg] = mdc
        d2w[drg] = w
        
    return rule_df, drg2idx, i2d, d2mdc, d2w

def visualize_attn(model_results):
    class_id = model_results['class_dsc']
    prob = model_results['prob']
    attn = model_results['attn']
    tokens = model_results['tokens']
    scaler = PyTMinMaxScalerVectorized()
    normalized_attn = scaler(attn)
    viz_record = visualization.VisualizationDataRecord(
        word_attributions=normalized_attn,
        pred_prob=prob,
        pred_class=class_id,
        true_class=class_id,
        attr_class=0,
        attr_score=1,
        raw_input_ids=tokens,
        convergence_score=1
    )
    return visualize_text(viz_record)


def modify_attn_html(attn_html):
    attn_split = attn_html.split('<mark')
    htmls = [attn_split[0]]
    for html in attn_split[1:]:
        # wrap around href tag
        href_html = f'<a href="espn.com" \
            <mark{html} \
            </a>'
        htmls.append(href_html)
    return "".join(htmls)

# copied out of captum because we need raw html instead of a jupyter widget
def visualize_text(datarecord):
    dom = ["<table width: 100%>"]
    rows = [
        "<th style='text-align: left'>Predicted DRG</th>"
        "<th style='text-align: left'>Word Importance</th>"
    ]
    pred_class_html = visualization.format_classname(datarecord.pred_class)
    word_attn_html = visualization.format_word_importances(
        datarecord.raw_input_ids, datarecord.word_attributions
    )
    word_attn_html = modify_attn_html(word_attn_html)
    rows.append(
        "".join(
            [
                "<tr>",
                pred_class_html,
                word_attn_html,
                "<tr>",
            ]
        )
    )

    dom.append("".join(rows))
    dom.append("</table>")
    html = "".join(dom)

    return html