dammy commited on
Commit
b0a8958
·
1 Parent(s): 93544b0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -4
app.py CHANGED
@@ -21,6 +21,9 @@ ST_name = 'sentence-transformers/sentence-t5-base'
21
  st_model = SentenceTransformer(ST_name)
22
  print('sentence read')
23
 
 
 
 
24
 
25
  def get_context(query_text, collection):
26
  query_emb = st_model.encode(query_text)
@@ -42,8 +45,7 @@ def local_query(query, context):
42
 
43
  return tokenizer.batch_decode(outputs, skip_special_tokens=True)
44
 
45
- def run_query(btn, history, query):
46
-
47
 
48
  file_name = btn.name
49
 
@@ -69,8 +71,9 @@ def run_query(btn, history, query):
69
  ids=ids
70
  )
71
 
72
-
73
-
 
74
 
75
  # context = get_context(query, collection)
76
  context = 'My name is damla'
@@ -94,6 +97,31 @@ def run_query(btn, history, query):
94
  def upload_pdf(file):
95
  try:
96
  if file is not None:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
  return 'Successfully uploaded!'
99
  else:
 
21
  st_model = SentenceTransformer(ST_name)
22
  print('sentence read')
23
 
24
+ client = chromadb.Client()
25
+ collection = client.create_collection("test_db")
26
+
27
 
28
  def get_context(query_text, collection):
29
  query_emb = st_model.encode(query_text)
 
45
 
46
  return tokenizer.batch_decode(outputs, skip_special_tokens=True)
47
 
48
+ def generate_langchain(btn):
 
49
 
50
  file_name = btn.name
51
 
 
71
  ids=ids
72
  )
73
 
74
+ return collection
75
+
76
+ def run_query(btn, history, query):
77
 
78
  # context = get_context(query, collection)
79
  context = 'My name is damla'
 
97
  def upload_pdf(file):
98
  try:
99
  if file is not None:
100
+
101
+ global collection
102
+
103
+ file_name = btn.name
104
+
105
+ loader = PDFMinerLoader(file_name)
106
+ doc = loader.load()
107
+
108
+ text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
109
+ texts = text_splitter.split_documents(doc)
110
+
111
+ texts = [i.page_content for i in texts]
112
+
113
+ doc_emb = st_model.encode(texts)
114
+ doc_emb = doc_emb.tolist()
115
+
116
+ ids = [str(uuid.uuid1()) for _ in doc_emb]
117
+
118
+
119
+ collection.add(
120
+ embeddings=doc_emb,
121
+ documents=texts,
122
+ ids=ids
123
+ )
124
+
125
 
126
  return 'Successfully uploaded!'
127
  else: