Update app.py
Browse files
app.py
CHANGED
@@ -10,11 +10,26 @@ import uuid
|
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
import os
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
ST_name = 'sentence-transformers/sentence-t5-base'
|
@@ -34,17 +49,37 @@ def get_context(query_text):
|
|
34 |
return context
|
35 |
|
36 |
def local_query(query, context):
|
37 |
-
t5query = """Using the available context, please answer the question.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
If you aren't sure please say i don't know.
|
39 |
Context: {}
|
40 |
Question: {}
|
41 |
""".format(context, query)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
outputs = model.generate(**inputs, max_new_tokens=20)
|
46 |
-
|
47 |
-
return tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
48 |
|
49 |
|
50 |
|
|
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
import os
|
12 |
|
13 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
14 |
+
import transformers
|
15 |
+
import torch
|
16 |
+
|
17 |
+
model_name = "tiiuae/falcon-40b-instruct"
|
18 |
+
|
19 |
+
# model_name = 'google/flan-t5-base'
|
20 |
+
# model = T5ForConditionalGeneration.from_pretrained(model_name, device_map='auto', offload_folder="offload")
|
21 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
22 |
+
# print('flan read')
|
23 |
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
25 |
+
pipeline = transformers.pipeline(
|
26 |
+
"text-generation",
|
27 |
+
model=model,
|
28 |
+
tokenizer=tokenizer,
|
29 |
+
torch_dtype=torch.bfloat16,
|
30 |
+
trust_remote_code=True,
|
31 |
+
device_map="auto",
|
32 |
+
)
|
33 |
|
34 |
|
35 |
ST_name = 'sentence-transformers/sentence-t5-base'
|
|
|
49 |
return context
|
50 |
|
51 |
def local_query(query, context):
|
52 |
+
# t5query = """Using the available context, please answer the question.
|
53 |
+
# If you aren't sure please say i don't know.
|
54 |
+
# Context: {}
|
55 |
+
# Question: {}
|
56 |
+
# """.format(context, query)
|
57 |
+
|
58 |
+
# inputs = tokenizer(t5query, return_tensors="pt")
|
59 |
+
|
60 |
+
# outputs = model.generate(**inputs, max_new_tokens=20)
|
61 |
+
|
62 |
+
# return tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
63 |
+
|
64 |
+
context_query = """Using the available context, please answer the question.
|
65 |
If you aren't sure please say i don't know.
|
66 |
Context: {}
|
67 |
Question: {}
|
68 |
""".format(context, query)
|
69 |
+
|
70 |
+
sequences = pipeline(
|
71 |
+
context_query,
|
72 |
+
max_length=200,
|
73 |
+
do_sample=True,
|
74 |
+
top_k=10,
|
75 |
+
num_return_sequences=1,
|
76 |
+
eos_token_id=tokenizer.eos_token_id,
|
77 |
+
)
|
78 |
+
|
79 |
+
# for seq in sequences:
|
80 |
+
# print(f"Result: {seq['generated_text']}")
|
81 |
|
82 |
+
return seq['generated_text']
|
|
|
|
|
|
|
|
|
83 |
|
84 |
|
85 |
|