dammy commited on
Commit
7a3625d
·
1 Parent(s): 6588e48

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -40
app.py CHANGED
@@ -14,22 +14,11 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
14
  import transformers
15
  import torch
16
 
17
- model = "tiiuae/falcon-40b-instruct"
18
 
19
- # model_name = 'google/flan-t5-base'
20
- # model = T5ForConditionalGeneration.from_pretrained(model_name, device_map='auto', offload_folder="offload")
21
- # tokenizer = AutoTokenizer.from_pretrained(model_name)
22
- # print('flan read')
23
 
24
- tokenizer = AutoTokenizer.from_pretrained(model)
25
- pipeline = transformers.pipeline(
26
- "text-generation",
27
- model=model,
28
- tokenizer=tokenizer,
29
- torch_dtype=torch.bfloat16,
30
- trust_remote_code=True,
31
- device_map="auto",
32
- )
33
 
34
 
35
  ST_name = 'sentence-transformers/sentence-t5-base'
@@ -49,37 +38,18 @@ def get_context(query_text):
49
  return context
50
 
51
  def local_query(query, context):
52
- # t5query = """Using the available context, please answer the question.
53
- # If you aren't sure please say i don't know.
54
- # Context: {}
55
- # Question: {}
56
- # """.format(context, query)
57
-
58
- # inputs = tokenizer(t5query, return_tensors="pt")
59
-
60
- # outputs = model.generate(**inputs, max_new_tokens=20)
61
-
62
- # return tokenizer.batch_decode(outputs, skip_special_tokens=True)
63
-
64
- context_query = """Using the available context, please answer the question.
65
  If you aren't sure please say i don't know.
66
  Context: {}
67
  Question: {}
68
  """.format(context, query)
69
-
70
- sequences = pipeline(
71
- context_query,
72
- max_length=200,
73
- do_sample=True,
74
- top_k=10,
75
- num_return_sequences=1,
76
- eos_token_id=tokenizer.eos_token_id,
77
- )
78
-
79
- # for seq in sequences:
80
- # print(f"Result: {seq['generated_text']}")
81
 
82
- return seq['generated_text']
 
 
 
 
 
83
 
84
 
85
 
 
14
  import transformers
15
  import torch
16
 
 
17
 
18
+ model_name = 'google/flan-t5-base'
19
+ model = T5ForConditionalGeneration.from_pretrained(model_name, device_map='auto', offload_folder="offload")
20
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
 
21
 
 
 
 
 
 
 
 
 
 
22
 
23
 
24
  ST_name = 'sentence-transformers/sentence-t5-base'
 
38
  return context
39
 
40
  def local_query(query, context):
41
+ t5query = """Using the available context, please answer the question.
 
 
 
 
 
 
 
 
 
 
 
 
42
  If you aren't sure please say i don't know.
43
  Context: {}
44
  Question: {}
45
  """.format(context, query)
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
+ inputs = tokenizer(t5query, return_tensors="pt")
48
+
49
+ outputs = model.generate(**inputs, max_new_tokens=20)
50
+
51
+ return tokenizer.batch_decode(outputs, skip_special_tokens=True)
52
+
53
 
54
 
55