Update app.py
Browse files
app.py
CHANGED
@@ -11,6 +11,8 @@ import uuid
|
|
11 |
from sentence_transformers import SentenceTransformer
|
12 |
import os
|
13 |
|
|
|
|
|
14 |
model_name = 'google/flan-t5-base'
|
15 |
model = T5ForConditionalGeneration.from_pretrained(model_name, device_map='auto', offload_folder="offload")
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
@@ -22,7 +24,7 @@ st_model = SentenceTransformer(ST_name)
|
|
22 |
print('sentence read')
|
23 |
|
24 |
|
25 |
-
def get_context(query_text):
|
26 |
query_emb = st_model.encode(query_text)
|
27 |
query_response = collection.query(query_embeddings=query_emb.tolist(), n_results=4)
|
28 |
context = query_response['documents'][0][0]
|
@@ -42,8 +44,32 @@ def local_query(query, context):
|
|
42 |
return tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
43 |
|
44 |
def run_query(history, query):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
result = local_query(query, context)
|
48 |
|
49 |
history = history.append(query)
|
@@ -52,6 +78,7 @@ def run_query(history, query):
|
|
52 |
|
53 |
def load_document(pdf_filename):
|
54 |
|
|
|
55 |
loader = PDFMinerLoader(pdf_filename)
|
56 |
doc = loader.load()
|
57 |
|
@@ -84,12 +111,10 @@ def upload_pdf(file):
|
|
84 |
# Check if the file is not None before accessing its attributes
|
85 |
if file is not None:
|
86 |
# Save the uploaded file
|
87 |
-
file_name = file.name
|
88 |
-
|
89 |
-
# file_name = os.path.basename(file_name)
|
90 |
|
91 |
-
messsage = load_document(file_name)
|
92 |
-
return
|
93 |
else:
|
94 |
return "No file uploaded."
|
95 |
|
|
|
11 |
from sentence_transformers import SentenceTransformer
|
12 |
import os
|
13 |
|
14 |
+
globl file_name = ''
|
15 |
+
|
16 |
model_name = 'google/flan-t5-base'
|
17 |
model = T5ForConditionalGeneration.from_pretrained(model_name, device_map='auto', offload_folder="offload")
|
18 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
24 |
print('sentence read')
|
25 |
|
26 |
|
27 |
+
def get_context(query_text, collection):
|
28 |
query_emb = st_model.encode(query_text)
|
29 |
query_response = collection.query(query_embeddings=query_emb.tolist(), n_results=4)
|
30 |
context = query_response['documents'][0][0]
|
|
|
44 |
return tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
45 |
|
46 |
def run_query(history, query):
|
47 |
+
|
48 |
+
|
49 |
+
loader = PDFMinerLoader(pdf_filename)
|
50 |
+
doc = loader.load()
|
51 |
+
|
52 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
53 |
+
texts = text_splitter.split_documents(doc)
|
54 |
+
|
55 |
+
texts = [i.page_content for i in texts]
|
56 |
+
|
57 |
+
doc_emb = st_model.encode(texts)
|
58 |
+
doc_emb = doc_emb.tolist()
|
59 |
+
|
60 |
+
ids = [str(uuid.uuid1()) for _ in doc_emb]
|
61 |
+
|
62 |
+
client = chromadb.Client()
|
63 |
+
collection = client.create_collection("test_db")
|
64 |
|
65 |
+
collection.add(
|
66 |
+
embeddings=doc_emb,
|
67 |
+
documents=texts,
|
68 |
+
ids=ids
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
context = get_context(query, collection)
|
73 |
result = local_query(query, context)
|
74 |
|
75 |
history = history.append(query)
|
|
|
78 |
|
79 |
def load_document(pdf_filename):
|
80 |
|
81 |
+
|
82 |
loader = PDFMinerLoader(pdf_filename)
|
83 |
doc = loader.load()
|
84 |
|
|
|
111 |
# Check if the file is not None before accessing its attributes
|
112 |
if file is not None:
|
113 |
# Save the uploaded file
|
114 |
+
file_name = file.name
|
|
|
|
|
115 |
|
116 |
+
# messsage = load_document(file_name)
|
117 |
+
return 'Successfully uploaded!'
|
118 |
else:
|
119 |
return "No file uploaded."
|
120 |
|