Spaces:
Sleeping
Sleeping
File size: 30,254 Bytes
0bb0d8e 923de84 0bb0d8e 3233c26 0bb0d8e b83fe04 0bb0d8e b83fe04 0bb0d8e b83fe04 0bb0d8e b83fe04 99840de 180330f b83fe04 0bb0d8e 4ed2821 0bb0d8e 4ed2821 0bb0d8e 4ed2821 0bb0d8e 4ed2821 0bb0d8e 4ed2821 0bb0d8e 4ed2821 0bb0d8e 4ed2821 0bb0d8e 4ed2821 0bb0d8e 4ed2821 0bb0d8e 4ed2821 0bb0d8e 4ed2821 0bb0d8e 964e0c7 0bb0d8e 4ed2821 0bb0d8e 964e0c7 0bb0d8e 4ed2821 0bb0d8e 3233c26 964e0c7 3233c26 964e0c7 3233c26 964e0c7 3233c26 0bb0d8e 4ed2821 0bb0d8e 4ed2821 0bb0d8e 684aed5 0bb0d8e 0861973 2866259 55f037d 0bb0d8e 8f62037 0bb0d8e 0861973 0bb0d8e 0861973 0bb0d8e 0861973 0bb0d8e 55f037d 0861973 0bb0d8e 55f037d 2866259 55f037d 0bb0d8e 0861973 0bb0d8e 55f037d 0bb0d8e 0861973 0bb0d8e 0861973 684aed5 0bb0d8e 55f037d 0bb0d8e 55f037d 0bb0d8e 9aac513 55f037d 9aac513 684aed5 9aac513 851f341 964e0c7 851f341 964e0c7 0bb0d8e a5fc8ed 684aed5 c557b53 0bb0d8e c557b53 0bb0d8e c557b53 cd02a2c c557b53 0bb0d8e 2e13b19 964e0c7 8f692f6 55f037d 0bb0d8e 0861973 0bb0d8e 55f037d c557b53 684aed5 0bb0d8e 09caf70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 |
#python app.py
import gradio as gr
import os
import pandas as pd
import requests
from pathlib import Path
import ctranslate2
import time
import logging
import transformers
import json
import io
from tqdm import tqdm
import subprocess
from huggingface_hub import snapshot_download, upload_file, HfApi, create_repo
# Function to download a Parquet file from a specified URL
def download_parquet(url, local_path):
response = requests.get(url, stream=True)
if response.status_code == 200:
with open(local_path, 'wb') as file:
for chunk in response.iter_content(chunk_size=1024):
file.write(chunk)
print("File downloaded successfully.")
else:
print(f"Failed to download file, status code: {response.status_code}")
# Function to convert Parquet files to JSONL format
def convert_parquet_to_jsonl_polars(input_file, output_dir, override=False):
output_dir_path = Path(output_dir)
output_dir_path.mkdir(parents=True, exist_ok=True)
input_path = Path(input_file)
output_file_path = output_dir_path / input_path.with_suffix(".jsonl").name
if output_file_path.exists() and not override:
print(f"Skipping because output exists already: {output_file_path}")
else:
df = pl.read_parquet(input_path)
df.write_ndjson(output_file_path)
print(f"Data written to {output_file_path}")
def convert_parquet_to_jsonl(parquet_filename, jsonl_filename):
try:
# Read the parquet file
df = pd.read_parquet(parquet_filename)
logger.info(f"Read Parquet file {parquet_filename} successfully.")
# Convert the dataframe to a JSON string and handle Unicode characters and forward slashes
json_str = df.to_json(orient='records', lines=True, force_ascii=False)
logger.info(f"Converted Parquet file to JSON string.")
# Replace escaped forward slashes if needed
json_str = json_str.replace('\\/', '/')
# Write the modified JSON string to the JSONL file
jsonl_filename += '/train.jsonl'
logger.info(f"Attempting to save to {jsonl_filename}")
with open(jsonl_filename, 'w', encoding='utf-8') as file:
file.write(json_str)
logger.info(f"Data saved to {jsonl_filename}")
except Exception as e:
logger.error(f"Failed to convert Parquet to JSONL: {e}")
raise
# Function to count lines in a JSONL file
def count_lines_in_jsonl(file_path):
with open(file_path, 'r', encoding='utf-8') as file:
line_count = sum(1 for _ in file)
return line_count
def parse_range_specification(range_specification, file_length):
line_indices = []
ranges = range_specification.split(',')
for r in ranges:
if '-' in r:
parts = r.split('-')
start = int(parts[0]) - 1 if parts[0] else 0
end = int(parts[1]) - 1 if parts[1] else file_length - 1
if start < 0 or end >= file_length:
logging.error(f"Range {r} is out of bounds.")
continue # Skip ranges that are out of bounds
line_indices.extend(range(start, end + 1))
else:
single_line = int(r) - 1
if single_line < 0 or single_line >= file_length:
logging.error(f"Line number {r} is out of bounds.")
continue # Skip line numbers that are out of bounds
line_indices.append(single_line)
return line_indices
def translate_text(text, translator, tokenizer, target_language):
"""
Translates the given text from English to German using CTranslate2 and the WMT21 model,
with special handling for newlines and segmenting text longer than 500 characters.
Ensures sequences of newlines (\n\n, \n\n\n, etc.) are accurately reproduced.
"""
try:
segments = []
newline_sequences = [] # To store sequences of newlines
segment = ""
i = 0
while i < len(text):
# Collect sequences of newlines
if text[i] == '\n':
newline_sequence = '\n'
while i + 1 < len(text) and text[i + 1] == '\n':
newline_sequence += '\n'
i += 1
if segment:
segments.append(segment) # Add the preceding text segment
segment = ""
newline_sequences.append(newline_sequence) # Store the newline sequence
else:
segment += text[i]
# If segment exceeds 500 characters, or if we reach the end of the text, process it
if len(segment) >= 500 or i == len(text) - 1:
end_index = max(segment.rfind('.', 0, 500), segment.rfind('?', 0, 500), segment.rfind('!', 0, 500))
if end_index != -1 and len(segment) > 500:
# Split at the last punctuation within the first 500 characters
segments.append(segment[:end_index+1])
segment = segment[end_index+1:].lstrip()
else:
# No suitable punctuation or end of text, add the whole segment
segments.append(segment)
segment = ""
i += 1
# Translate the collected text segments
translated_segments = []
for segment in segments:
source = tokenizer.convert_ids_to_tokens(tokenizer.encode(segment))
target_prefix = [tokenizer.lang_code_to_token[target_language]]
results = translator.translate_batch([source], target_prefix=[target_prefix])
target = results[0].hypotheses[0][1:]
translated_segment = tokenizer.decode(tokenizer.convert_tokens_to_ids(target))
translated_segments.append(translated_segment)
# Reassemble the translated text with original newline sequences
translated_text = ""
for i, segment in enumerate(translated_segments):
translated_text += segment
if i < len(newline_sequences):
translated_text += newline_sequences[i] # Insert the newline sequence
return translated_text.strip()
except Exception as e:
logging.error(f"An error occurred during translation: {e}")
return None
def translate_item_ufb(item, raw_file_path, translator, tokenizer, target_language):
try:
# Translate the prompt directly since it's a string
translated_prompt = translate_text(item['prompt'], translator, tokenizer)
# Translate the chosen and rejected contents
translated_chosen = []
for choice in item['chosen']:
translated_content = translate_text(choice['content'], translator, tokenizer, target_language)
translated_chosen.append({'content': translated_content, 'role': choice['role']})
translated_rejected = []
for choice in item['rejected']:
translated_content = translate_text(choice['content'], translator, tokenizer, target_language)
translated_rejected.append({'content': translated_content, 'role': choice['role']})
# Write the raw response to a backup file
with open(raw_file_path, 'a', encoding='utf-8') as raw_file:
raw_file.write(f"Prompt: {translated_prompt}\n")
raw_file.write(f"Chosen: {json.dumps(translated_chosen, ensure_ascii=False)}\n")
raw_file.write(f"Rejected: {json.dumps(translated_rejected, ensure_ascii=False)}\n\n")
logging.info("Translation request successful.")
# Update the original item with the translated fields
item['prompt'] = translated_prompt
item['chosen'] = translated_chosen
item['rejected'] = translated_rejected
return item
except Exception as e:
logging.error(f"An error occurred during translation: {e}")
return None
def validate_item_ufb(item):
# Check basic required fields including 'prompt' as a simple string
required_fields = ['source', 'prompt', 'chosen', 'rejected']
for field in required_fields:
if field not in item:
logging.warning(f"Missing required field: {field}")
return False
if field == 'prompt' and not isinstance(item['prompt'], str):
logging.warning("Prompt must be a string.")
return False
# Check 'chosen' and 'rejected' which should be lists of dictionaries
for field in ['chosen', 'rejected']:
if not isinstance(item[field], list) or not item[field]:
logging.warning(f"No entries or incorrect type for section: {field}")
return False
for idx, message in enumerate(item[field]):
if 'content' not in message or 'role' not in message:
logging.warning(f"Missing 'content' or 'role' field in {field} at index {idx}")
return False
if not isinstance(message['content'], str) or not isinstance(message['role'], str):
logging.warning(f"Invalid type for 'content' or 'role' field in {field} at index {idx}")
return False
return True
def translate_item_mix(item, raw_file_path, translator, tokenizer, target_language):
"""
Translates the relevant fields in the given item from English to German using CTranslate2 and the WMT21 model,
and saves the raw response to a backup file.
"""
#print ("translating:", item)
try:
# Translate each part of the prompt separately and preserve the order
translated_prompts = []
for message in item['prompt']:
translated_content = translate_text(message['content'], translator, tokenizer, target_language)
translated_prompts.append({'content': translated_content, 'role': message['role']})
# Translate the chosen and rejected contents
translated_chosen_content = translate_text(item['chosen'][0]['content'], translator, tokenizer, target_language)
translated_rejected_content = translate_text(item['rejected'][0]['content'], translator, tokenizer, target_language)
# Write the raw response to a backup file
with open(raw_file_path, 'a', encoding='utf-8') as raw_file:
raw_file.write("Prompt content:\n")
for translated_prompt in translated_prompts:
raw_file.write(f"{translated_prompt['role']}: {translated_prompt['content']}\n")
raw_file.write(f"Chosen content: {translated_chosen_content}\n")
raw_file.write(f"Rejected content: {translated_rejected_content}\n\n")
logging.info("Translation request successful.")
except Exception as e:
logging.error(f"An error occurred during translation: {e}")
return None
# Update the original item with the translated fields
item['prompt'] = translated_prompts
item['chosen'][0]['content'] = translated_chosen_content
item['rejected'][0]['content'] = translated_rejected_content
logging.info("Translation processing successful.")
return item
def validate_item_mix(item):
"""
Validates the structure, presence, and content of required fields in the given item,
allowing for multiple elements in the 'prompt' field for multi-turn conversations.
"""
required_fields = ['dataset', 'prompt', 'chosen', 'rejected']
for field in required_fields:
if field not in item:
logging.warning(f"Missing required field: {field}")
return False
# Check for at least one element in 'prompt' and exactly one element in 'chosen' and 'rejected'
if len(item['prompt']) < 1 or len(item['chosen']) != 1 or len(item['rejected']) != 1:
logging.warning("Invalid number of elements in 'prompt', 'chosen', or 'rejected' field.")
return False
# Validate 'content' and 'role' fields in all messages of 'prompt', and single elements of 'chosen' and 'rejected'
for choice in item['prompt'] + item['chosen'] + item['rejected']:
if 'content' not in choice or 'role' not in choice:
logging.warning("Missing 'content' or 'role' field in choice.")
return False
if not isinstance(choice['content'], str) or not isinstance(choice['role'], str):
logging.warning("Invalid type for 'content' or 'role' field in choice.")
return False
return True
def translate_item_ufb_cached(item, raw_file_path, translator, tokenizer, target_language):
try:
translated_texts = {} # Cache to store translated texts
# Translate the prompt if necessary (which is a user input and can appear again)
if item['prompt'] not in translated_texts:
translated_prompt = translate_text(item['prompt'], translator, tokenizer, target_language)
translated_texts[item['prompt']] = translated_prompt
else:
translated_prompt = translated_texts[item['prompt']]
# Helper function to handle content translation with caching
def get_translated_content(content):
if content not in translated_texts:
translated_texts[content] = translate_text(content, translator, tokenizer, target_language)
return translated_texts[content]
# Process translations for chosen and rejected sections
def translate_interactions(interactions):
translated_interactions = []
for interaction in interactions:
translated_content = get_translated_content(interaction['content'])
translated_interactions.append({'content': translated_content, 'role': interaction['role']})
return translated_interactions
translated_chosen = translate_interactions(item['chosen'])
translated_rejected = translate_interactions(item['rejected'])
# Write the raw response to a backup file
with open(raw_file_path, 'a', encoding='utf-8') as raw_file:
raw_file.write(f"Prompt: {translated_prompt}\n")
raw_file.write(f"Chosen: {json.dumps(translated_chosen, ensure_ascii=False)}\n")
raw_file.write(f"Rejected: {json.dumps(translated_rejected, ensure_ascii=False)}\n\n")
logging.info("Translation request successful.")
# Update the original item with the translated fields
item['prompt'] = translated_prompt
item['chosen'] = translated_chosen
item['rejected'] = translated_rejected
return item
except Exception as e:
logging.error(f"An error occurred during translation: {e}")
return None
def validate_item_ufb_cached(item):
# Check basic required fields
required_fields = ['source', 'prompt', 'chosen', 'rejected']
for field in required_fields:
if field not in item:
logging.warning(f"Missing required field: {field}")
return False
# Ensure 'prompt' is a string
if not isinstance(item['prompt'], str):
logging.warning("Prompt must be a string.")
return False
# Check 'chosen' and 'rejected' which should be lists of dictionaries
for field in ['chosen', 'rejected']:
if not isinstance(item[field], list) or not item[field]:
logging.warning(f"No entries or incorrect type for section: {field}")
return False
for idx, message in enumerate(item[field]):
if 'content' not in message or 'role' not in message:
logging.warning(f"Missing 'content' or 'role' field in {field} at index {idx}")
return False
if not isinstance(message['content'], str) or not isinstance(message['role'], str):
logging.warning(f"Invalid type for 'content' or 'role' field in {field} at index {idx}")
return False
return True
def process_file(input_file_path, output_file_path, raw_file_path, line_indices, translator, tokenizer, model_type, target_language):
try:
# Assigning validation and translation functions based on model_type
if model_type == "mix":
print ("translating a mix-style model...")
validate_item = validate_item_mix
translate_item = translate_item_mix
elif model_type == "ufb_cached":
print ("translating an ufb_cached-style model...")
validate_item = validate_item_ufb_cached
translate_item = translate_item_ufb_cached # def translate_item_ufb(item, raw_file_path, translator, tokenizer):
elif model_type == "ufb":
print ("translating an ultrafeedback-style model...")
validate_item = validate_item_ufb
translate_item = translate_item_ufb # def translate_item_ufb(item, raw_file_path, translator, tokenizer):
else:
raise ValueError(f"Unsupported model_type: {model_type}")
with open(input_file_path, 'r', encoding='utf-8') as file:
data_points = [json.loads(line) for line in file]
failed_items = []
failed_items_indices = []
for index in tqdm(line_indices, desc="Processing lines", unit="item"):
item = data_points[index]
# Validate the item structure
if not validate_item(item):
logging.warning("Skipping item due to invalid structure.")
failed_items.append(item)
continue
# Translate the relevant fields in the item
translated_item = None
retry_count = 0
while translated_item is None and retry_count < 3:
print ("going to translate the item...")
translated_item = translate_item(item, raw_file_path, translator, tokenizer, target_language)
retry_count += 1
if translated_item is None:
logging.warning(f"Translation failed for item. Retry attempt: {retry_count}")
time.sleep(1)
if translated_item is not None:
translated_item['index'] = index
with open(output_file_path, 'a', encoding='utf-8') as file:
file.write(json.dumps(translated_item, ensure_ascii=False) + "\n")
else:
failed_items_indices.append(index)
failed_items.append(item)
logging.error("Translation failed after multiple attempts. Skipping item.")
# Validate the translated item structure
if not validate_item(translated_item):
logging.warning("Skipping translated item due to invalid structure.")
failed_items.append(item)
continue
with open('failed_items.jsonl', 'w', encoding='utf-8') as file:
for item in failed_items:
file.write(json.dumps(item, ensure_ascii=False) + "\n")
failed_items_str = generate_failed_items_str(failed_items_indices)
with open('failed_items_index.txt', 'w', encoding='utf-8') as f:
f.write(failed_items_str)
logging.info("Translation completed successfully.")
except Exception as e:
logging.error(f"An error occurred: {e}")
def generate_failed_items_str(indices):
"""
Converts a list of failed item indices into a string.
"""
if not indices:
return ""
# Sort the list of indices and initialize the first range
indices.sort()
range_start = indices[0]
current = range_start
ranges = []
for i in indices[1:]:
if i == current + 1:
current = i
else:
if range_start == current:
ranges.append(f"{range_start}")
else:
ranges.append(f"{range_start}-{current}")
range_start = current = i
# Add the last range
if range_start == current:
ranges.append(f"{range_start}")
else:
ranges.append(f"{range_start}-{current}")
return ",".join(ranges)
# Function to upload the output file to Hugging Face
def upload_output_to_huggingface(output_file_path, repo_name, token):
api = HfApi()
# Check if the repository exists
try:
print ("checking repo:", repo_name)
api.repo_info(repo_id=repo_name, repo_type="dataset", token=token)
except Exception as e:
if "404" in str(e):
# Create the repository if it doesn't exist
print ("creating it...")
create_repo(repo_id=repo_name, repo_type="dataset", token=token)
print(f"Created repository: {repo_name}")
else:
print(f"Failed to check repository existence: {e}")
return
# Upload the file to the repository
try:
print ("starting dataset upload from:", output_file_path)
upload_file(
path_or_fileobj=output_file_path,
path_in_repo=output_file_path,
repo_id=repo_name,
repo_type="dataset",
token=token
)
print(f"Uploaded {output_file_path} to Hugging Face repository: {repo_name}")
except Exception as e:
print(f"Failed to upload {output_file_path} to Hugging Face: {e}")
raise
def translate_dataset(train_url, local_parquet_path, input_file_path, output_file_path, raw_file_path, range_specification, model_type, output_dir, output_repo_name, token, translator, tokenizer, target_language):
try:
# Download the Parquet file
download_parquet(train_url, local_parquet_path)
except Exception as e:
logging.error(f"Failed to download the Parquet file from {train_url}: {e}")
return
try:
# Convert the downloaded Parquet file to JSONL
convert_parquet_to_jsonl(local_parquet_path, output_dir)
except Exception as e:
logging.error(f"Failed to convert Parquet to JSONL: {e}")
return
try:
# Rename the JSONL file using subprocess to ensure correct handling
subprocess.run(["mv", f"{output_dir}/train.jsonl", input_file_path], check=True)
except subprocess.CalledProcessError as e:
logging.error(f"Failed to rename the file from 'train.jsonl' to {input_file_path}: {e}")
return
try:
# Count lines in the JSONL file to validate contents
line_count = count_lines_in_jsonl(input_file_path)
logging.info(f"Number of lines in the file: {line_count}")
except Exception as e:
logging.error(f"Failed to count lines in {input_file_path}: {e}")
return
try:
# Parse the range specification for processing specific lines
line_indices = parse_range_specification(range_specification, file_length=line_count)
if not line_indices:
logging.error("No valid line indices to process. Please check the range specifications.")
return
except Exception as e:
logging.error(f"Error parsing range specification '{range_specification}': {e}")
return
try:
# Process the file with specified model type and line indices
process_file(input_file_path, output_file_path, raw_file_path, line_indices, translator, tokenizer, model_type, target_language)
except Exception as e:
logging.error(f"Failed to process the file {input_file_path}: {e}")
return
try:
# Upload the output file to Hugging Face repository
upload_output_to_huggingface(output_file_path, output_repo_name, token)
except Exception as e:
logging.error(f"Failed to upload {output_file_path} to Hugging Face: {e}")
# Setup logging configuration
log_stream = io.StringIO()
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("translation.log", mode='a'),
logging.StreamHandler(log_stream)
])
logger = logging.getLogger(__name__)
# Main function to handle the translation workflow
# Main function to handle the translation workflow
def main(dataset_url, model_type, output_dataset_name, range_specification, target_language, token: gr.OAuthToken | None, profile: gr.OAuthProfile | None):
try:
# Login to Hugging Face
if token is None or profile is None or token.token is None or profile.username is None:
return "### You must be logged in to use this service."
if token:
logger.info("Logged in to Hugging Face")
# Configuration and paths
tokenizer_name = "facebook/wmt21-dense-24-wide-en-x"
model_repo_name = "cstr/wmt21ct2_int8" # Repository to download the model from
# Download the model snapshot from Hugging Face
model_path = snapshot_download(repo_id=model_repo_name, token=token.token)
logger.info(f"Model downloaded to: {model_path}")
# Load the CTranslate2 model
translator = ctranslate2.Translator(model_path, device="auto")
logger.info("CTranslate2 model loaded successfully.")
# Load the tokenizer
tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer_name)
tokenizer.src_lang = "en"
tokenizer.tgt_lang = target_language # Set target language
logger.info("Tokenizer loaded successfully.")
# Define the task based on user input
task = {
"url": dataset_url,
"local_path": "train.parquet",
"input_file": f"{model_type}_en.jsonl",
"output_file": f"{model_type}_{target_language}.jsonl", # Include target language in the filename
"raw_file": f"{model_type}_{target_language}_raw.jsonl",
"range_spec": range_specification,
"model_type": model_type,
"target_language": target_language # Include target language in the task
}
# Call the translate_dataset function with the provided parameters
translate_dataset(
train_url=task["url"],
local_parquet_path=task["local_path"],
input_file_path=task["input_file"],
output_file_path=task["output_file"],
output_dir=".",
output_repo_name=output_dataset_name,
raw_file_path=task["raw_file"],
token=token.token,
range_specification=task["range_spec"],
model_type=task["model_type"],
translator=translator,
tokenizer=tokenizer,
target_language=task["target_language"] # Pass the target language
)
logger.info("Dataset translation completed!")
return "Dataset translation completed!\n\n### Logs:\n" + log_stream.getvalue()
else:
return "Login failed. Please try again."
except Exception as e:
logger.error(f"An error occurred in the main function: {e}")
return f"An error occurred: {e}\n\n### Logs:\n{log_stream.getvalue()}"
# Gradio interface setup
gradio_title = "π§ WMT21 Dataset Translation"
gradio_desc = """This tool translates english datasets using the WMT21 translation model.
## π What Does This Tool Do:
- Translates datasets (as parquet files) with structures based on the selected model type (see below).
- The translation model (facebook/wmt21-dense-24-wide-en-x) supports as target languages: Hausa (ha), Icelandic (is), Japanese (ja), Czech (cs), Russian (ru), Chinese (zh), German (de)
- Uploads the translated dataset as jsonl to Hugging Face.
- At the moment, this works only on CPU, and therefore is very very slow."""
datasets_desc = """## π Dataset Types:
Note: additional fields will be kept (untranslated), an additional index field is added, which makes it easier to verify results, i.a.
- **mix**:
- `prompt`: List of dictionaries with 'content' and 'role' fields (multi-turn conversation).
- `chosen`: Single dictionary with 'content' and 'role' fields.
- `rejected`: Single dictionary with 'content' and 'role' fields.
- **ufb_cached**:
- `prompt`: String (user input).
- `chosen`: List of dictionaries with 'content' and 'role' fields.
- `rejected`: List of dictionaries with 'content' and 'role' fields.
- **ufb**:
- like ufb_cached, but we do not check for already translated strings
## π οΈ Backend:
The translation model is int8 quantized from facebook/wmt21-dense-24-wide-en-x and runs via ctranslate2 on the Hugging Face Hub."""
# Define the theme
theme = gr.themes.Soft(text_size="lg", spacing_size="lg")
with gr.Blocks(theme=theme) as demo:
gr.HTML(f"""<h1 align="center" id="space-title">{gradio_title}</h1>""")
gr.Markdown(gradio_desc)
with gr.Row(variant="panel"):
gr.Markdown(value="## π Login to Hugging Face"),
gr.LoginButton(min_width=380)
gr.Markdown(value="π¨ **This is needed to upload the resulting dataset.**")
with gr.Row(equal_height=False):
with gr.Column():
dataset_url = gr.Textbox(label="Input Dataset URL", lines=2, placeholder = "https://huggingface.co/datasets/alvarobartt/dpo-mix-7k-simplified/resolve/main/data/train-00000-of-00001.parquet?download=true")
model_type = gr.Dropdown(choices=["mix", "ufb_cached", "ufb"], label="Dataset Type")
output_dataset_name = gr.Textbox(label="Output Dataset Name", lines=1, placeholder = "cstr/translated_datasets")
range_specification = gr.Textbox(label="Range Specification", lines=1, placeholder="e.g., 1-100")
target_language = gr.Dropdown(choices=["ha", "is", "ja", "cs", "ru", "zh", "de"], label="Target Language") # New dropdown for target language
with gr.Column():
output = gr.Markdown(label="Output")
submit_btn = gr.Button("Translate Dataset", variant="primary")
submit_btn.click(main, inputs=[dataset_url, model_type, output_dataset_name, range_specification, target_language], outputs=output)
gr.Markdown(datasets_desc)
demo.queue(max_size=10).launch(share=True, show_api=True) |