Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,17 +6,14 @@ import gradio as gr
|
|
6 |
from PyPDF2 import PdfReader
|
7 |
import logging
|
8 |
import webbrowser
|
9 |
-
from
|
|
|
|
|
10 |
|
11 |
# Set up logging
|
12 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
13 |
|
14 |
-
#
|
15 |
-
HUGGINGFACE_MODELS = {
|
16 |
-
"Phi-3 Mini 128k": "eswardivi/Phi-3-mini-128k-instruct",
|
17 |
-
}
|
18 |
-
|
19 |
-
# Common context window sizes
|
20 |
CONTEXT_SIZES = {
|
21 |
"4K": 4000,
|
22 |
"8K": 8000,
|
@@ -25,15 +22,49 @@ CONTEXT_SIZES = {
|
|
25 |
"200K": 200000
|
26 |
}
|
27 |
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
def
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
def extract_text_from_pdf(pdf_path):
|
37 |
"""Extract text content from PDF file."""
|
38 |
try:
|
39 |
reader = PdfReader(pdf_path)
|
@@ -51,7 +82,7 @@ def extract_text_from_pdf(pdf_path):
|
|
51 |
logging.error(f"Error reading PDF file: {e}")
|
52 |
return f"Error reading PDF file: {e}"
|
53 |
|
54 |
-
def format_content(text, format_type):
|
55 |
"""Format extracted text according to specified format."""
|
56 |
if format_type == 'txt':
|
57 |
return text
|
@@ -65,7 +96,7 @@ def format_content(text, format_type):
|
|
65 |
logging.error(f"Unsupported format: {format_type}")
|
66 |
return f"Unsupported format: {format_type}"
|
67 |
|
68 |
-
def split_into_snippets(text, context_size):
|
69 |
"""Split text into manageable snippets based on context size."""
|
70 |
sentences = re.split(r'(?<=[.!?]) +', text)
|
71 |
snippets = []
|
@@ -87,7 +118,7 @@ def split_into_snippets(text, context_size):
|
|
87 |
|
88 |
return snippets
|
89 |
|
90 |
-
def build_prompts(snippets, prompt_instruction, custom_prompt, snippet_num=None):
|
91 |
"""Build formatted prompts from text snippets."""
|
92 |
if snippet_num is not None:
|
93 |
if 1 <= snippet_num <= len(snippets):
|
@@ -111,27 +142,120 @@ def build_prompts(snippets, prompt_instruction, custom_prompt, snippet_num=None)
|
|
111 |
|
112 |
return "\n\n".join(prompts)
|
113 |
|
114 |
-
def
|
115 |
-
"""Send prompt to
|
116 |
try:
|
117 |
-
client =
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
api_name="/chat"
|
124 |
)
|
125 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
except Exception as e:
|
127 |
-
logging.error(f"Error
|
128 |
-
return f"Error
|
129 |
|
130 |
# Main Interface
|
131 |
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
|
|
|
|
|
132 |
# Header
|
133 |
gr.Markdown("# π Smart PDF Summarizer")
|
134 |
-
gr.Markdown("Upload a PDF document and get AI-powered summaries using
|
135 |
|
136 |
# Main Content
|
137 |
with gr.Row():
|
@@ -151,9 +275,10 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
151 |
|
152 |
gr.Markdown("### Context Window Size")
|
153 |
with gr.Row():
|
|
|
154 |
for size_name, size_value in CONTEXT_SIZES.items():
|
155 |
-
|
156 |
-
|
157 |
|
158 |
context_size = gr.Slider(
|
159 |
minimum=1000,
|
@@ -176,30 +301,43 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
176 |
)
|
177 |
|
178 |
model_choice = gr.Radio(
|
179 |
-
choices=["OpenAI ChatGPT", "
|
180 |
value="OpenAI ChatGPT",
|
181 |
label="π€ Model Selection"
|
182 |
)
|
183 |
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
label="
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
196 |
)
|
197 |
|
198 |
# Right Column - Output
|
199 |
with gr.Column(scale=1):
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
progress_status = gr.Textbox(
|
204 |
label="π Progress",
|
205 |
interactive=False
|
@@ -226,63 +364,51 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
226 |
)
|
227 |
|
228 |
# Event Handlers
|
229 |
-
def
|
230 |
-
return gr.update(
|
231 |
|
232 |
-
def
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
# Split into snippets
|
246 |
-
snippets = split_into_snippets(formatted_text, ctx_size)
|
247 |
-
|
248 |
-
# Build prompts
|
249 |
-
default_prompt = "Summarize the following text:"
|
250 |
-
full_prompt = build_prompts(snippets, default_prompt, prompt, snippet_num)
|
251 |
-
|
252 |
-
if isinstance(full_prompt, str) and full_prompt.startswith("Error"):
|
253 |
-
return full_prompt, "", "", None
|
254 |
-
|
255 |
-
# Generate summary based on model choice
|
256 |
-
if model_selection == "Hugging Face Model":
|
257 |
-
summary = send_to_huggingface(full_prompt, HUGGINGFACE_MODELS[hf_model_choice])
|
258 |
-
else:
|
259 |
-
summary = "Please use the Copy Prompt button and paste into ChatGPT."
|
260 |
-
|
261 |
-
# Save files for download
|
262 |
-
files_to_download = []
|
263 |
-
|
264 |
-
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as prompt_file:
|
265 |
-
prompt_file.write(full_prompt)
|
266 |
-
files_to_download.append(prompt_file.name)
|
267 |
-
|
268 |
-
if summary != "Please use the Copy Prompt button and paste into ChatGPT.":
|
269 |
-
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as summary_file:
|
270 |
-
summary_file.write(summary)
|
271 |
-
files_to_download.append(summary_file.name)
|
272 |
-
|
273 |
-
return "Processing complete!", full_prompt, summary, files_to_download
|
274 |
-
|
275 |
-
except Exception as e:
|
276 |
-
logging.error(f"Error processing PDF: {e}")
|
277 |
-
return f"Error processing PDF: {str(e)}", "", "", None
|
278 |
|
279 |
# Connect event handlers
|
280 |
model_choice.change(
|
281 |
-
|
282 |
inputs=[model_choice],
|
283 |
-
outputs=[
|
284 |
)
|
285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
process_button.click(
|
287 |
process_pdf,
|
288 |
inputs=[
|
@@ -292,7 +418,11 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
292 |
snippet_number,
|
293 |
custom_prompt,
|
294 |
model_choice,
|
295 |
-
hf_model
|
|
|
|
|
|
|
|
|
296 |
],
|
297 |
outputs=[
|
298 |
progress_status,
|
@@ -301,19 +431,19 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
301 |
download_files
|
302 |
]
|
303 |
)
|
304 |
-
|
305 |
copy_prompt_button.click(
|
306 |
copy_to_clipboard,
|
307 |
inputs=[generated_prompt],
|
308 |
outputs=[progress_status]
|
309 |
)
|
310 |
-
|
311 |
copy_summary_button.click(
|
312 |
copy_to_clipboard,
|
313 |
inputs=[summary_output],
|
314 |
outputs=[progress_status]
|
315 |
)
|
316 |
-
|
317 |
open_chatgpt_button.click(
|
318 |
open_chatgpt,
|
319 |
outputs=[progress_status]
|
@@ -325,7 +455,10 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
325 |
1. Upload a PDF document
|
326 |
2. Choose output format and context window size
|
327 |
3. Select snippet number (default: 1) or enter custom prompt
|
328 |
-
4. Select
|
|
|
|
|
|
|
329 |
5. Click 'Process PDF' to generate summary
|
330 |
6. Use 'Copy Prompt' and 'Open ChatGPT' for manual processing
|
331 |
7. Download generated files as needed
|
@@ -334,6 +467,7 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
334 |
- Support for multiple PDF formats
|
335 |
- Flexible text formatting options
|
336 |
- Predefined context window sizes (4K to 200K)
|
|
|
337 |
- Copy to clipboard functionality
|
338 |
- Direct ChatGPT integration
|
339 |
- Downloadable outputs
|
|
|
6 |
from PyPDF2 import PdfReader
|
7 |
import logging
|
8 |
import webbrowser
|
9 |
+
from huggingface_hub import InferenceClient
|
10 |
+
from typing import Dict, List, Optional, Tuple
|
11 |
+
import time
|
12 |
|
13 |
# Set up logging
|
14 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
15 |
|
16 |
+
# Constants
|
|
|
|
|
|
|
|
|
|
|
17 |
CONTEXT_SIZES = {
|
18 |
"4K": 4000,
|
19 |
"8K": 8000,
|
|
|
22 |
"200K": 200000
|
23 |
}
|
24 |
|
25 |
+
class ModelRegistry:
|
26 |
+
def __init__(self):
|
27 |
+
self.hf_models = {
|
28 |
+
"Phi-3 Mini 128k": "microsoft/Phi-3-mini-128k-instruct",
|
29 |
+
"Custom Model": ""
|
30 |
+
}
|
31 |
+
self.groq_models = self._fetch_groq_models()
|
32 |
|
33 |
+
def _fetch_groq_models(self) -> Dict[str, str]:
|
34 |
+
"""Fetch available Groq models"""
|
35 |
+
try:
|
36 |
+
headers = {
|
37 |
+
"Authorization": f"Bearer {os.getenv('GROQ_API_KEY')}",
|
38 |
+
"Content-Type": "application/json"
|
39 |
+
}
|
40 |
+
response = requests.get("https://api.groq.com/openai/v1/models", headers=headers)
|
41 |
+
if response.status_code == 200:
|
42 |
+
models = response.json().get("data", [])
|
43 |
+
return {model["id"]: model["id"] for model in models}
|
44 |
+
else:
|
45 |
+
logging.error(f"Failed to fetch Groq models: {response.status_code}")
|
46 |
+
return self._get_default_groq_models()
|
47 |
+
except Exception as e:
|
48 |
+
logging.error(f"Error fetching Groq models: {e}")
|
49 |
+
return self._get_default_groq_models()
|
50 |
+
|
51 |
+
def _get_default_groq_models(self) -> Dict[str, str]:
|
52 |
+
"""Return default Groq models when API is unavailable"""
|
53 |
+
return {
|
54 |
+
"llama-3.1-70b-versatile": "llama-3.1-70b-versatile",
|
55 |
+
"mixtral-8x7b-32768": "mixtral-8x7b-32768",
|
56 |
+
"llama-3.1-8b-instant": "llama-3.1-8b-instant"
|
57 |
+
}
|
58 |
+
|
59 |
+
def refresh_groq_models(self) -> Dict[str, str]:
|
60 |
+
"""Refresh the list of available Groq models"""
|
61 |
+
self.groq_models = self._fetch_groq_models()
|
62 |
+
return self.groq_models
|
63 |
+
|
64 |
+
# Initialize model registry
|
65 |
+
model_registry = ModelRegistry()
|
66 |
|
67 |
+
def extract_text_from_pdf(pdf_path: str) -> str:
|
|
|
68 |
"""Extract text content from PDF file."""
|
69 |
try:
|
70 |
reader = PdfReader(pdf_path)
|
|
|
82 |
logging.error(f"Error reading PDF file: {e}")
|
83 |
return f"Error reading PDF file: {e}"
|
84 |
|
85 |
+
def format_content(text: str, format_type: str) -> str:
|
86 |
"""Format extracted text according to specified format."""
|
87 |
if format_type == 'txt':
|
88 |
return text
|
|
|
96 |
logging.error(f"Unsupported format: {format_type}")
|
97 |
return f"Unsupported format: {format_type}"
|
98 |
|
99 |
+
def split_into_snippets(text: str, context_size: int) -> List[str]:
|
100 |
"""Split text into manageable snippets based on context size."""
|
101 |
sentences = re.split(r'(?<=[.!?]) +', text)
|
102 |
snippets = []
|
|
|
118 |
|
119 |
return snippets
|
120 |
|
121 |
+
def build_prompts(snippets: List[str], prompt_instruction: str, custom_prompt: Optional[str], snippet_num: Optional[int] = None) -> str:
|
122 |
"""Build formatted prompts from text snippets."""
|
123 |
if snippet_num is not None:
|
124 |
if 1 <= snippet_num <= len(snippets):
|
|
|
142 |
|
143 |
return "\n\n".join(prompts)
|
144 |
|
145 |
+
def send_to_hf_inference(prompt: str, model_name: str, api_key: str) -> str:
|
146 |
+
"""Send prompt to HuggingFace using Inference API"""
|
147 |
try:
|
148 |
+
client = InferenceClient(api_key=api_key)
|
149 |
+
messages = [{"role": "user", "content": prompt}]
|
150 |
+
completion = client.chat.completions.create(
|
151 |
+
model=model_name,
|
152 |
+
messages=messages,
|
153 |
+
max_tokens=500
|
|
|
154 |
)
|
155 |
+
return completion.choices[0].message.content
|
156 |
+
except Exception as e:
|
157 |
+
logging.error(f"Error with HF inference: {e}")
|
158 |
+
return f"Error with HF inference: {e}"
|
159 |
+
|
160 |
+
def send_to_groq(prompt: str, model_name: str, api_key: str) -> str:
|
161 |
+
"""Send prompt to Groq API"""
|
162 |
+
try:
|
163 |
+
headers = {
|
164 |
+
"Authorization": f"Bearer {api_key}",
|
165 |
+
"Content-Type": "application/json"
|
166 |
+
}
|
167 |
+
data = {
|
168 |
+
"model": model_name,
|
169 |
+
"messages": [{"role": "user", "content": prompt}]
|
170 |
+
}
|
171 |
+
response = requests.post(
|
172 |
+
"https://api.groq.com/openai/v1/chat/completions",
|
173 |
+
headers=headers,
|
174 |
+
json=data
|
175 |
+
)
|
176 |
+
return response.json()["choices"][0]["message"]["content"]
|
177 |
+
except Exception as e:
|
178 |
+
logging.error(f"Error with Groq API: {e}")
|
179 |
+
return f"Error with Groq API: {e}"
|
180 |
+
|
181 |
+
def copy_to_clipboard(text: str) -> str:
|
182 |
+
"""Copy text to clipboard"""
|
183 |
+
return "Text copied to clipboard!"
|
184 |
+
|
185 |
+
def open_chatgpt() -> str:
|
186 |
+
"""Open ChatGPT in browser"""
|
187 |
+
webbrowser.open('https://chat.openai.com/')
|
188 |
+
return "Opening ChatGPT in browser..."
|
189 |
+
|
190 |
+
def process_pdf(pdf, fmt, ctx_size, snippet_num, prompt, model_selection,
|
191 |
+
hf_model_choice, hf_custom_model, hf_api_key,
|
192 |
+
groq_model_choice, groq_api_key) -> Tuple[str, str, str, List[str]]:
|
193 |
+
"""Process PDF and generate summary"""
|
194 |
+
try:
|
195 |
+
if not pdf:
|
196 |
+
return "Please upload a PDF file.", "", "", []
|
197 |
+
|
198 |
+
# Extract text
|
199 |
+
text = extract_text_from_pdf(pdf.name)
|
200 |
+
if text.startswith("Error"):
|
201 |
+
return text, "", "", []
|
202 |
+
|
203 |
+
# Format content
|
204 |
+
formatted_text = format_content(text, fmt)
|
205 |
+
|
206 |
+
# Split into snippets
|
207 |
+
snippets = split_into_snippets(formatted_text, ctx_size)
|
208 |
+
|
209 |
+
# Build prompts
|
210 |
+
default_prompt = "Summarize the following text:"
|
211 |
+
full_prompt = build_prompts(snippets, default_prompt, prompt, snippet_num)
|
212 |
+
|
213 |
+
if isinstance(full_prompt, str) and full_prompt.startswith("Error"):
|
214 |
+
return full_prompt, "", "", []
|
215 |
+
|
216 |
+
# Process with selected model
|
217 |
+
if model_selection == "HuggingFace Inference":
|
218 |
+
if not hf_api_key:
|
219 |
+
return "HuggingFace API key required.", full_prompt, "", []
|
220 |
+
|
221 |
+
model_id = hf_custom_model if hf_model_choice == "Custom Model" else model_registry.hf_models[hf_model_choice]
|
222 |
+
summary = send_to_hf_inference(full_prompt, model_id, hf_api_key)
|
223 |
+
|
224 |
+
elif model_selection == "Groq API":
|
225 |
+
if not groq_api_key:
|
226 |
+
return "Groq API key required.", full_prompt, "", []
|
227 |
+
|
228 |
+
summary = send_to_groq(full_prompt, groq_model_choice, groq_api_key)
|
229 |
+
|
230 |
+
else: # OpenAI ChatGPT
|
231 |
+
summary = "Please use the Copy Prompt button and paste into ChatGPT."
|
232 |
+
|
233 |
+
# Save files for download
|
234 |
+
files_to_download = []
|
235 |
+
|
236 |
+
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as prompt_file:
|
237 |
+
prompt_file.write(full_prompt)
|
238 |
+
files_to_download.append(prompt_file.name)
|
239 |
+
|
240 |
+
if summary != "Please use the Copy Prompt button and paste into ChatGPT.":
|
241 |
+
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as summary_file:
|
242 |
+
summary_file.write(summary)
|
243 |
+
files_to_download.append(summary_file.name)
|
244 |
+
|
245 |
+
return "Processing complete!", full_prompt, summary, files_to_download
|
246 |
+
|
247 |
except Exception as e:
|
248 |
+
logging.error(f"Error processing PDF: {e}")
|
249 |
+
return f"Error processing PDF: {str(e)}", "", "", []
|
250 |
|
251 |
# Main Interface
|
252 |
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
253 |
+
# Store context size value
|
254 |
+
context_size_value = gr.State(value=32000)
|
255 |
+
|
256 |
# Header
|
257 |
gr.Markdown("# π Smart PDF Summarizer")
|
258 |
+
gr.Markdown("Upload a PDF document and get AI-powered summaries using various AI models.")
|
259 |
|
260 |
# Main Content
|
261 |
with gr.Row():
|
|
|
275 |
|
276 |
gr.Markdown("### Context Window Size")
|
277 |
with gr.Row():
|
278 |
+
context_buttons = []
|
279 |
for size_name, size_value in CONTEXT_SIZES.items():
|
280 |
+
btn = gr.Button(size_name)
|
281 |
+
context_buttons.append((btn, size_value))
|
282 |
|
283 |
context_size = gr.Slider(
|
284 |
minimum=1000,
|
|
|
301 |
)
|
302 |
|
303 |
model_choice = gr.Radio(
|
304 |
+
choices=["OpenAI ChatGPT", "HuggingFace Inference", "Groq API"],
|
305 |
value="OpenAI ChatGPT",
|
306 |
label="π€ Model Selection"
|
307 |
)
|
308 |
|
309 |
+
with gr.Column(visible=False) as hf_options:
|
310 |
+
hf_model = gr.Dropdown(
|
311 |
+
choices=list(model_registry.hf_models.keys()),
|
312 |
+
label="π§ HuggingFace Model",
|
313 |
+
value="Phi-3 Mini 128k"
|
314 |
+
)
|
315 |
+
hf_custom_model = gr.Textbox(
|
316 |
+
label="Custom Model ID",
|
317 |
+
placeholder="Enter custom model ID...",
|
318 |
+
visible=False
|
319 |
+
)
|
320 |
+
hf_api_key = gr.Textbox(
|
321 |
+
label="π HuggingFace API Key",
|
322 |
+
type="password"
|
323 |
+
)
|
324 |
|
325 |
+
with gr.Column(visible=False) as groq_options:
|
326 |
+
groq_model = gr.Dropdown(
|
327 |
+
choices=list(model_registry.groq_models.keys()),
|
328 |
+
label="π§ Groq Model",
|
329 |
+
value=list(model_registry.groq_models.keys())[0]
|
330 |
+
)
|
331 |
+
groq_refresh_btn = gr.Button("π Refresh Models")
|
332 |
+
groq_api_key = gr.Textbox(
|
333 |
+
label="π Groq API Key",
|
334 |
+
type="password"
|
335 |
)
|
336 |
|
337 |
# Right Column - Output
|
338 |
with gr.Column(scale=1):
|
339 |
+
process_button = gr.Button("π Process PDF", variant="primary")
|
340 |
+
|
|
|
341 |
progress_status = gr.Textbox(
|
342 |
label="π Progress",
|
343 |
interactive=False
|
|
|
364 |
)
|
365 |
|
366 |
# Event Handlers
|
367 |
+
def update_context_size(size):
|
368 |
+
return gr.update(value=size)
|
369 |
|
370 |
+
def toggle_model_options(choice):
|
371 |
+
return (
|
372 |
+
gr.update(visible=choice == "HuggingFace Inference"),
|
373 |
+
gr.update(visible=choice == "Groq API")
|
374 |
+
)
|
375 |
+
|
376 |
+
def refresh_groq_models_list():
|
377 |
+
updated_models = model_registry.refresh_groq_models()
|
378 |
+
return gr.update(choices=list(updated_models.keys()))
|
379 |
+
|
380 |
+
def toggle_custom_model(model_name):
|
381 |
+
return gr.update(visible=model_name == "Custom Model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
382 |
|
383 |
# Connect event handlers
|
384 |
model_choice.change(
|
385 |
+
toggle_model_options,
|
386 |
inputs=[model_choice],
|
387 |
+
outputs=[hf_options, groq_options]
|
388 |
)
|
389 |
+
|
390 |
+
for btn, size_value in context_buttons:
|
391 |
+
btn.click(
|
392 |
+
update_context_size,
|
393 |
+
inputs=[],
|
394 |
+
outputs=[context_size]
|
395 |
+
).then(
|
396 |
+
lambda x=size_value: x,
|
397 |
+
None,
|
398 |
+
context_size
|
399 |
+
)
|
400 |
+
|
401 |
+
hf_model.change(
|
402 |
+
toggle_custom_model,
|
403 |
+
inputs=[hf_model],
|
404 |
+
outputs=[hf_custom_model]
|
405 |
+
)
|
406 |
+
|
407 |
+
groq_refresh_btn.click(
|
408 |
+
refresh_groq_models_list,
|
409 |
+
outputs=[groq_model]
|
410 |
+
)
|
411 |
+
|
412 |
process_button.click(
|
413 |
process_pdf,
|
414 |
inputs=[
|
|
|
418 |
snippet_number,
|
419 |
custom_prompt,
|
420 |
model_choice,
|
421 |
+
hf_model,
|
422 |
+
hf_custom_model,
|
423 |
+
hf_api_key,
|
424 |
+
groq_model,
|
425 |
+
groq_api_key
|
426 |
],
|
427 |
outputs=[
|
428 |
progress_status,
|
|
|
431 |
download_files
|
432 |
]
|
433 |
)
|
434 |
+
|
435 |
copy_prompt_button.click(
|
436 |
copy_to_clipboard,
|
437 |
inputs=[generated_prompt],
|
438 |
outputs=[progress_status]
|
439 |
)
|
440 |
+
|
441 |
copy_summary_button.click(
|
442 |
copy_to_clipboard,
|
443 |
inputs=[summary_output],
|
444 |
outputs=[progress_status]
|
445 |
)
|
446 |
+
|
447 |
open_chatgpt_button.click(
|
448 |
open_chatgpt,
|
449 |
outputs=[progress_status]
|
|
|
455 |
1. Upload a PDF document
|
456 |
2. Choose output format and context window size
|
457 |
3. Select snippet number (default: 1) or enter custom prompt
|
458 |
+
4. Select your preferred model:
|
459 |
+
- OpenAI ChatGPT: Manual copy/paste workflow
|
460 |
+
- HuggingFace Inference: Direct API integration
|
461 |
+
- Groq API: High-performance inference
|
462 |
5. Click 'Process PDF' to generate summary
|
463 |
6. Use 'Copy Prompt' and 'Open ChatGPT' for manual processing
|
464 |
7. Download generated files as needed
|
|
|
467 |
- Support for multiple PDF formats
|
468 |
- Flexible text formatting options
|
469 |
- Predefined context window sizes (4K to 200K)
|
470 |
+
- Multiple model integrations
|
471 |
- Copy to clipboard functionality
|
472 |
- Direct ChatGPT integration
|
473 |
- Downloadable outputs
|