
RTXGI Unreal Engine Plugin
To bring the advantages of RTXGI to as many developers as possible, all RTXGI 1.1 features are now available in Unreal Engine through the
RTXGI UE plugin.

To use the RTXGI UE plugin, you'll first need to meet the following software and hardware requirements:

Software

Windows 10 v1809 or higher.
The latest drivers for your GPU. NVIDIA drivers are available here.
Unreal Engine version 4.27 or 5.x

Hardware

Any DXR enabled GPU. NVIDIA DXR enabled GPUs:

Titan RTX
RTX 3090, 3080 Ti, 3080, 3070 Ti, 3070, 3060 Ti, 3060, 3050
RTX 2080 Ti, 2080 SUPER, 2080, 2070 SUPER, 2070, 2060 SUPER, 2060
GTX 1660 Ti, 1660 SUPER, 1660
GTX 1080 Ti, 1080, 1070, 1060 with at least 6GB of memory

Note

Problems, Feedback, and Bugs If you encounter any problems, have feedback, or would like to report a bug, please contact: rtxgi-
support-service@nvidia.com

Getting Started

Set your project's default RHI to DirectX 12 and enable Ray Tracing in the project settings. At this time, ray tracing requires DirectX
12 in Unreal Engine.

Go to Project Settings→Platforms→Windows→Targeted RHIs→Default RHI and select DirectX 12.
Make sure the DirectX 11 & 12 (SM5) check box is also selected.

Go to Project Settings→Engine→Rendering→Ray Tracing and check the box next to Ray Tracing.
(Optional) Enable Force No Precomputed Lighting to avoid doubling lighting contributions (i.e. mixing RTXGI and precomputed
indirect lighting).

To disable precomputed lighting in the current level, select World Settings→Lightmass→Force No Precomputed Lighting.

http://www.nvidia.com/drivers
mailto:rtxgi-support-service@nvidia.com

To disable precomputed lighting globally, disable Project Settings→Engine→Rendering→Lighting→Allow Static Lighting.

Next, navigate to the plugins area and enable the RTX Global Illumination (RTXGI) plugin.

In the editor, go to Settings→Plugins.
In the plugins dialog, go to Built-In→Rendering.
Enable the NVIDIA RTX Global Illumination plugin.

Restart the UE editor.
4.27:

Set the r.GlobalIllumination.ExperimentalPlugin cvar to 1 to enable global illumination plugins (set in .ini files, on the console, or
in blueprints).

5.x:
Set the r.DynamicGlobalIlluminationMethod cvar to 4 to enable global illumination plugins (set in .ini files, on the console, or in
blueprints). It can also be changed in the project settings. Under the rendering section, select Plugin for the Dynamic Global
Illumination Method.

As an alternative, in the postprocess settings set the Dynamic Global Illumination Method override to Plugin. The postprocess
setting overrides the cvar.

Set the r.RTXGI.DDGI cvar to 1 to enable RTXGI (set in .ini files, on the console, or in blueprints).
Place DDGIVolume actors in the scene and to use RTX Global Illumination within the volume.
That's it. Go make something great with RTXGI! Learn more about RTXGI Functionality and usage in the Artist Overview.

Functionality

RTXGI implements the Dynamic Diffuse Global Illumination (DDGI) algorithm to compute diffuse global illumination. DDGI uses ray
tracing to gather irradiance and distance data on a regular grid of probes. This is similar to existing irradiance probe solutions you may already
be familiar with, but irradiance and distance calculations now occur in real-time. RTXGI probes temporally accumulate data and use a
statistics-based method to resolve visibility and prevent light leaking.

To use RTXGI in UE, place DDGIVolume actor(s) in the scene. These volumes contain a grid of probes that RTXGI updates with ray
tracing. One DDGIVolume is updated per frame in a weighted round robin fashion using the volume's Update Priority property.

Various properties of a DDGIVolume can be adjusted and these properties are discussed below.

RTXGI Volume Properties

Dynamic indirect lighting is generated inside the volume with RTXGI. The DDGIVolume has many properties that can be tweaked (shown
below on the right), but the default values should work well for many situations.

GI Volume DDGIVolume Properties

Property Description

Enable
Volume

Manually enables or disables the volume.

Update
Priority

A weighted round robin system is used to update volumes. Volumes with higher update priority values are updated
more often. As a result, as more volumes are added to the scene, it will take longer for the system to update all volumes.

Lighting
Priority

A value that allows for custom prioritization of volumes. If there are multiple volumes in the view frustum at the same time,
the densest volume will be selected and used to apply indirect lighting to nearby surfaces. If you want to override this
behavior, give the volume you want to use the lowest lighting priority value (and increase the lighting priority
value of other volumes).

Blending
Distance

Specifies how the DDGIVolume blends at the edges of the volume, in world-space units. This is used to create faded
areas at the edge of the volume and can be useful as an artistic control. For example, if you wanted vaulted ceilings at the
top of a volume to have less light.

Blending
Cutoff
Distance

The distance from the edge of a volume at which it has zero weight (i.e. turns black or yields to an encompassing volume),
in world-space units. Useful if you do not want a linear fade all the way to the edge.

Clear
Probes

Flushes current data stored in volume probes.

Runtime
Static

Volumes marked as runtime static will store indirect lighting in probes at author-time and will not be updated
dynamically during gameplay. This can be used to decrease performance costs. For example, place a large static
volume in the level with very sparse probes and mark it as runtime static to fill the scene with indirect lighting computed
while in-editor. Then use smaller, denser DDGIVolumes for dynamic indirect lighting in places of interest at runtime

GI Probes DDGIVolume Properties

Property Description

Rays Per
Probe

Sets the number of rays traced per probe. Higher numbers of rays traced per probe increases image quality by producing
more stable indirect illumination, but will have a higher performance cost. In many cases, the default of 288 rays per
probe works well.

Probe
Counts

Sets the number of probes placed on each axis of a DDGIVolume . High probe counts within a volume are usually not
necessary. We recommend probe grids arranged with probes every 2-3 meters. Sparse probe grids often produce
better visual results than dense probe grids, since dense probes grids localize the effect of each probe and can (at times)
reveal the structure of the probe grid. When in doubt, use the minimum number of probes necessary to get the
desired result.

Probe
Max Ray
Distance

The maximum distance a probe ray can travel. No surfaces are hit past this distance. Reducing this value can increase
performance in some scenarios.

Probe
History
Weight

A value in the range [0,1] that affects the temporal accumulation of ray tracing results in probes. A value of 1 always uses
the existing probe values and ignores the latest ray traced information. A value of 0 always uses the latest ray traced
information and ignores all previous probe data. This property is best set to a value that balances the previous and latest
ray traced data. The default value of 0.97 works well in most cases.

Automatic
Probe
Relocation

Adjusts the position of probes every frame based on the surrounding world geometry. Probes are moved to locations that
result in better lighting, instead of (for example) being positioned inside of walls or other objects.

Probe
Min
Frontface
Distance

The minimum distance allowed to a front facing triangle before Probe Relocation moves the probe.

Probe
Backface
Theshold

The ratio of rays cast for a probe that may hit back facing triangles before Probe Relocation and State Classification
assume the probes is inside of geometry.

Scroll
Probes
Infinitely

Turns the volume into an Infinite Scrolling Volume. The volume becomes world axis-aligned and when the volume
moves the probes on the outer-most edges of the volume are repositioned to the opposite end of the volume in the
direction of movement ("scrolling" the volume like tank tread). With this approach, the majority of probes retain their
position in world-space making for more temporally stable lighting results when the volume moves.

Visualize
Probes

Shows probes of the current volume as grid of spheres. This is useful for debugging purposes. It is possible to change the
visualization data or override probes visualization for all volumes from the project settings

Probe
Distance
Exponent

An exponent used during visibility testing. A high value rapidly reacts to depth discontinuities but may cause banding.

Probe
Irradiance
Encoding
Gamma

An exponent that perceptually encodes irradiance for faster light-to-dark convergence.

Probe
Change
Threshold

A ratio used during probe radiance blending. Specifies a threshold to identify when large lighting changes occur. When the
difference in the maximum color components between the previous and current irradiance is larger than this threshold, the
hysteresis will be reduced.

Probe
Brightness
Threshold

A threshold value used during probe radiance blending that determines the maximum allowed difference in brightness
between the previous and current irradiance values. This prevents impulses from drastically changing a texel's irradiance in
a single update cycle.

GI Lighting DDGIVolume Properties

Property Description

Sky Light
Type on
Ray Miss

None/Raster/Ray Tracing - specifies which type of the sky light contributes to lighting computed by the DDGIVolume for
rays that missed the scene's geometry. Outside of DDGIVolume you can control type of sky light with
r.RayTracing.SkyLight .

View and
Normal
Bias

Similar to shadow map biases, these properties help adjust for visibility artifacts. If you are seeing light or shadow leaking
problems, adjust these bias values. In general, the view bias value should be 4x larger than the normal bias.

Light
Multiplier

Use this setting to artificially increase or decrease the GI lighting contribution from this volume. Note that this multiplier
affects lighting contribution from emissive surfaces as well.

Emissive
Multiplier

Use this setting to artificially increase or decrease how much emissive contributes to the GI in this volume.

10-bit
Irradiance
Scalar

A [0,1] value that is used to scale lighting magnitudes before storage when using 10-bit irradiance texture formats. Scaled
values are reconstituted after reading, allowing for larger irradiance values to be stored in 10-bit texture formats. This
saves memory at the cost of some precision.

Blueprints Overview

RTXGI exposes several functionalities to Blueprints. This allows implementing logic using the blueprint editor for controlling different DDGI
Volume properties in run-time. All functions are grouped under the 'DDGI' category as shown below:

Blueprint Node Description

Clear Probe Data
Flushes current data stored in
volume probes.

Get Emissive Multiplier , Irradiance Scalar , Light Multiplier , Update Priority , Lighting Priority ,
Blending Distance , Blending Cutoff Distance , View Bias , Normal Bias

Retrieves the current value for
the corresponding property.

Set Emissive Multiplier , Irradiance Scalar , Light Multiplier , Update Priority , Lighting Priority ,
Blending Distance , Blending Cutoff Distance , View Bias , Normal Bias

Changes the value of the
corresponding property.

Toggle Volume
Enable or disable the target
volume.

Set Probes Visualization
Toggles probes visualization for
the target volume.

All blueprint functions are accessible through the DDGIVolume Component . The Blueprint editor will automatically add the necessary
DDGIVolume Component when calling a blueprint function on a DDGIVolume actor.

Several new console variables ("cvars") are available to use with RTXGI. These are described in the table below.

RTXGI Console Variables

Command Options Description

r.RTXGI.DDGI 0, 1 Toggles RTXGI on or off.

r.RTXGI.DDGI.LightingPass.Scale
0.25 -
1.0

Scale for the lighting pass resolution between 0.25 - 1.0 (value is clamped to this
range).

r.RTXGI.DDGI.ProbesTextureVis 0, 1, 2
Toggles probe visualization. This allows the user to see what the probes see from
the camera's point of view. In mode 2, it shows ray misses in blue, ray hits in green
and ray back face hits in red.

r.RTXGI.MemoryUsed None
Shows the summary and details of video memory being used by RTXGI in the
output log.

Vis DDGIProbesTexture None
Allows the user to see the texture from the r.RTXGI.DDGI.ProbesTextureVis
command. This helps diagnose inaccuracies in the probes due to lighting or
geometry not being configured to be visible to ray tracing.

r.RTXGI.DDGI.StatVolume Integer
The index for which volume's STAT is displayed. Per volume stats are Num
Samples, Probe Count X Y Z, and Num Rays.

Project Settings

The RTXGI plugin has several settings in UE's project settings dialog.

Irradiance Bits - by default, a 10-bit per color channel texture format is used to store probe irradiance. With extended radiance or
very bright light sources, 10-bits may not be enough to properly represent the light's energy. The Irradiance texture's bit depth can be
increased to 32-bits (using a RGBA32F texture format) to support extended radiance at the cost of increased memory use. Alteratively,
use 10-bit irradiance and adjust the Irradiance Scalar option of a DDGIVolume to reduce lighting magnitudes before storage and
scale them back up after reading. This saves memory at the cost of some precision.

Distance Bits - by default, 16-bit floating point format is used to store distance (and distance squared) in a probe for use when
determiniming occlusion. When distances are large, 16-bits may not be sufficient. The distance texture's bit depth can be increased to
32-bits for imrpoved precision.

Debug Probe Radius - sets the radius of spheres, in world-space units, that are rendered when visualizing DDGIVolume probes.

Probe Update Ray Budget - sets the maximum number of rays that may be cast when updating probes. 0 specifies an unlimited
number of rays. An 8x8x8 volume using 288 rays per probe would specify 147,456 to fully update all probes each frame. One volume
is updated each frame based on the volume's priority. A higher volume priority means the volume is updated more often. These settings
make it possibe to place a ceiling on performance costs, while also controlling the proportion of ray updates (or amount of light lag) a
volume recieves.

Probes Visualization - by default visualized probes will show their irradiance, it is possible to visualize other modes including Hit
Distance and Squared Hit Distance or disabling probes visualization for all volumes. In case of visualizing distances, please check the
next property 'Probes Depth Scale' for controlling the distance range.

Probes Depth Scale - when 'Probes Visualization' mode is set distance, it is possible to control this property to have better distance
visualization on the probes.

Serialize Probes - by default probes data is serialized in the .umap file. It is possible with this option to disable the serialization to have
smaller map files on disk. Re-saving map with this option is disabled will wipe any existing data stored previously.

Runtime Statistics

View RTXGI runtime statistics using STAT RTXGI Performance . All statistics are averages over time.

Total Number of Volumes - total number of volumes in the scene
Selected Volume Index - current index for the selected volume, set by r.RTXGI.DDGI.StatVolume

Num Samples (selected) - Total number of samples generated by the selected volume. Note Num Samples is an estimate, as each ray
generates 1 - (# of lights) samples, accurately calculated num samples would result in a severe performance hit.
Probe Count X (selected) - Number of probes in the X dimension
Probe Count Y (selected) - Number of probes in the Y dimension

Probe Count Z (selected) - Number of probes in the Z dimension
Rays Per Probe (selected) - Number of rays per probe
Samples Per Frame - Total number of samples across all volumes
RTXGI Samples Per Millisecond - Number of samples across all volumes per millisecond
RTXGI Samples Per Frame 60hz - Number of samples accross all volumes possible at 60 fps, bounded to 0 when current fps is
below 60.
RTXGI GPU Time (ms) - Milliseconds of GPU time taken by RTXGI per frame
Total GPU Frametime (ms) - Milliseconds of GPU time in total per frame
Frametime Without RTXGI (ms) - Milliseconds of GPU time in total per frame sans RTXGI

Limitations

RTXGI does not work with UE's forward rendering path.
RTXGI lighting is not visible within UE's other ray traced effects (for example, ray traced reflections).
In UE 4.27, RTXGI will be overriden by RTGI when setting the r.RayTracing.ForceAllRayTracingEffects cvar to 1 . In order to show
the RTXGI results, this cvar should be set to its default value -1

Artist Overview
RTXGI adds a high performance option to ray traced global illumination in UE. As implied by the name, RTXGI requires ray tracing to be
enabled and the plugin to be active.

If ray tracing is not available, the RTXGI plugin loads probe textures that were previously stored to disk from a platform that has ray tracing
(i.e. DirectX 12).

Note

When ray tracing is not available, for example in DirectX 11 or Vulkan RHIs, DDGIVolumes can be used but operate in a static mode
where the probes do not update at runtime.

Note

Probes temporally accumulate bounce lighting after a DDGIVolume is placed in the world.

RTXGI Volume Placement in UE

You can find the RTXGI DDGI Volume actor under Volumes (shown below) and place it in a level.

All of UE's native transform gizmos (translation, rotation, and scale) can be used to fit the volume to your geometry.

Tips and Tricks

Disable Lightmaps

By using RTXGI as the GI solution for the project, it is recommended to disable lightmaps support since you are replacing baked GI of
Lightmass with dynamic infinite bounce GI from RTXGI. This helps reducing shader permutation thus speeding shader compilation.

Additionally it helps saving some memory on static meshes since no additonal UV is required for baking lightmaps.

Disabling lightmap support can be done from the project settings by unchecking 'Allow Static Lighting'.

Regarding lightmap UV, this can be disabled from static mesh import options.

If the static mesh already has a lightmap UV generated, it can be deleted from the static mesh editor by unchecking 'Generate Lightmap UVs'.

Sparse Probe Layouts Recommended

Relatively sparse probe grids are good practice for both high performance and quality results. As a starting point, we recommend setting
probes about 2-3 meters apart from each other in a typical human-scale indoor scene. In large outdoor scenes, you can go much sparser and
still get good results!

Note

By design, RTXGI does not generate high frequency detail. Increasing probe density can help to an extent, but it won't produce precise
or sharp lighting and shadow at any density. For high frequency details, use other forms of lighting such as RTAO, RT Skylight Shadows
and/or RT rect lights.

You can have multiple DDGIVolumes with varying probe densities. The system will always make use of the probes in the denser volume.
You might do this if you need a more precision in a specific area. It may not take an expensive volume to achieve more precise sampling. The
volume on the bottom right is a 5x5x5 DDGIVolume set to the default 288 rays per probe. A volume like this is relatively inexpensive and
can help achieve the result you want!

Recommended probe density A higher density "detail" volume

Emissive Surfaces are Light Sources with RTXGI

One of the interesting features of RTXGI is the ability to consider emissive objects as light sources.

Note

With emissive objects, raytracing is not limited to secondary rays. RTXGI considers the first ray hit as well. From an artist perspective,
this means that emissive objects are considered as direct lighting source with shadow casting similar to parameteric lights of UE.

Emissive sphere generating direct lighting and casting direct shadows

In this example of the NVIDIA Attic scene, there are large emissive meshes outside the windows to generate extra lighting.

Emissive meshes added outside the NVIDIA Attic to add lighting

Any emissive surface can be a light source with RTXGI. The larger and more physically available the light emissive mesh is to RTXGI
probes, the greater the lighting contribution. Emissive surface values can also be turned up to generate more light. With this approach, you
might find it's better to switch from 10-bit irradiance to 32-bit irradiance, since this provides a more detailed range of light contributions. 32-
bit irradiance should be used with caution though, since it increases the memory cost 3x. Only enable 32-bit irradiance when absolutely
necessary!

With RTXGI, it is now possible to light a scene with fewer point lights, spot lights, and/or area lights. Instead, you can rely on a combination
of a few lights and emissive surfaces. This change will not only improve workflow and iteration time, but it can improve performance (due to
fewer lights). You may find it's better to take on the small fixed cost of RTXGI instead of using many shadow casting lights. Lighting a scene
in this way is a different approach, but may produce a result that runs faster and is easier to create.

Here's a practical example:

Emissive meshes generate extra light without being a visible part of the scene. In UE, the emissive meshes can be marked as only visible to
ray tracing. You can create "hidden" emissive meshes to generate extra illumination in areas where the visible mesh is too small to contribute
on its own. To do this, make use of the RayTracingQualitySwitch node.

Lighting from hidden emissive meshes Hidden emissive meshes visualized

Make sure RTXGI is contributing light where you want

RTXGI doesn’t automatically make every surface brighter. It can require some fine tuning and the final result is a combination of your
materials, overall lighting, postprocess settings, and other choices. A handy way to start developing your baseline for the global illumination
contribution is to look at your scene in Lightingonly mode. Lightingonly is useful in this case because it displays all surfaces with a flat 50%
gray color. When turning RTXGI on and off, you'll get a clear understanding of the true global illumination contribution being made by various
lighting sources.

Note

Even though the surfaces display as 50% gray, they still contribute color lighting and bounce, so you are getting a good look at what the
lighting is doing.

Lightingonly mode, with direct lighting only Lightingonly mode, with direct lighting and RTXGI

As you can imagine, dark surfaces don't reflect light well (very dark surfaces don't reflect light at all!). If your textures are dark (typically
below the 50% brightness threshold), they will have less bounce light and a smaller global illumination contribution. This is not necessarily a
bad result. If objects are meant to be very dark then the lighting is as intended and still physically based. Brighter surfaces will contribute more
obvious bounce light (since they reflect it). Think of the visual look of a game like Mirror's Edge - with it's very bright and colorful surfaces
and how much indirect bounce lighting it shows off.

The Ultimate Tip

Think about your surfaces and how they relate to global lighting. If your goal is to make sure you have a lot of indirect light in your scene, even
small value changes can have an impact on the final indirect lighting result. It may not take much of a shift in some cases to get the result you
want.

	RTXGI Unreal Engine Plugin
	Getting Started
	Functionality
	RTXGI Volume Properties
	Blueprints Overview
	RTXGI Console Variables
	Project Settings
	Runtime Statistics

	Artist Overview
	RTXGI Volume Placement in UE
	Tips and Tricks
	Disable Lightmaps
	Sparse Probe Layouts Recommended
	Emissive Surfaces are Light Sources with RTXGI
	Make sure RTXGI is contributing light where you want
	The Ultimate Tip

