# app.py import gradio as gr import pandas as pd # CSS for layout styling css = """ table > thead { white-space: normal } table { --cell-width-1: 250px } table > tbody > tr > td:nth-child(2) > div { overflow-x: auto } .filter-checkbox-group { max-width: max-content; } """ # Load dataset def load_data(): # load dataset from csv file df = pd.read_csv("results.csv") return df df = load_data() with gr.Blocks() as demo: gr.Markdown("# In-Context Learning Embedding and Reranker Benchmark (ICLERB) Leaderboard") gr.Markdown("## Introduction\nIn-Context Learning Embedding and Reranker Benchmark (ICLERB) is a benchmark to evaluate embedding and reranker models used to retrieve documents for In-Context Learning (ICL). The methodology is described in this [paper](https://arxiv.org/abs/2411.18947). ") gr.Markdown("## Leaderboard") gr.Dataframe(df) gr.Markdown("## Replicating results\nThe code used to generate these results will be shared on Github soon.") gr.Markdown("## Citation\nTo use this data in your research, please cite the following [paper](https://arxiv.org/abs/2411.18947):") gr.Markdown("
@article{iclerb,title={ICLERB: In-Context Learning Embedding and Reranker Benchmark},\nauthor={Al Ghossein, Marie and Contal, Emile and Robicquet, Alexandre},\njournal={arXiv preprint arXiv:2411.18947},\nyear={2024}}
") gr.Markdown("## Acknowledgements\nICLERB was developed at [Crossing Minds](https://www.crossingminds.com/iclerb) by:") gr.Markdown("- [Marie Al Ghossein](https://www.linkedin.com/in/mariealghossein/)") gr.Markdown("- [Emile Contal](https://www.linkedin.com/in/emile-contal-72837652/)") gr.Markdown("- [Alexandre Robicquet](https://www.linkedin.com/in/alexandrerobicquet/)") demo.launch()