{ "cells": [ { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Running on local URL: http://127.0.0.1:7901\n", "\n", "To create a public link, set `share=True` in `launch()`.\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [] }, "execution_count": 55, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Gradio app that takes seismic waveform as input and marks 2 phases on the waveform as output.\n", "\n", "import gradio as gr\n", "import numpy as np\n", "import pandas as pd\n", "from phasehunter.data_preparation import prepare_waveform\n", "import torch\n", "import io\n", "\n", "from scipy.stats import gaussian_kde\n", "from bmi_topography import Topography\n", "import earthpy.spatial as es\n", "\n", "import obspy\n", "from obspy.clients.fdsn import Client\n", "from obspy.clients.fdsn.header import FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException\n", "from obspy.geodetics.base import locations2degrees\n", "from obspy.taup import TauPyModel\n", "from obspy.taup.helper_classes import SlownessModelError\n", "\n", "from obspy.clients.fdsn.header import URL_MAPPINGS\n", "\n", "import matplotlib.pyplot as plt\n", "import matplotlib.dates as mdates\n", "from mpl_toolkits.axes_grid1 import ImageGrid\n", "\n", "from glob import glob\n", "\n", "def make_prediction(waveform):\n", " waveform = np.load(waveform)\n", " processed_input = prepare_waveform(waveform)\n", " \n", " # Make prediction\n", " with torch.inference_mode():\n", " output = model(processed_input)\n", "\n", " p_phase = output[:, 0]\n", " s_phase = output[:, 1]\n", "\n", " return processed_input, p_phase, s_phase\n", "\n", "def mark_phases(waveform, uploaded_file):\n", "\n", " if uploaded_file is not None:\n", " waveform = uploaded_file.name\n", "\n", " processed_input, p_phase, s_phase = make_prediction(waveform)\n", "\n", " # Create a plot of the waveform with the phases marked\n", " if sum(processed_input[0][2] == 0): #if input is 1C\n", " fig, ax = plt.subplots(nrows=2, figsize=(10, 2), sharex=True)\n", "\n", " ax[0].plot(processed_input[0][0], color='black', lw=1)\n", " ax[0].set_ylabel('Norm. Ampl.')\n", "\n", " else: #if input is 3C\n", " fig, ax = plt.subplots(nrows=4, figsize=(10, 6), sharex=True)\n", " ax[0].plot(processed_input[0][0], color='black', lw=1)\n", " ax[1].plot(processed_input[0][1], color='black', lw=1)\n", " ax[2].plot(processed_input[0][2], color='black', lw=1)\n", "\n", " ax[0].set_ylabel('Z')\n", " ax[1].set_ylabel('N')\n", " ax[2].set_ylabel('E')\n", "\n", " p_phase_plot = p_phase*processed_input.shape[-1]\n", " p_kde = gaussian_kde(p_phase_plot)\n", " p_dist_space = np.linspace( min(p_phase_plot)-10, max(p_phase_plot)+10, 500 )\n", " ax[-1].plot( p_dist_space, p_kde(p_dist_space), color='r')\n", "\n", " s_phase_plot = s_phase*processed_input.shape[-1]\n", " s_kde = gaussian_kde(s_phase_plot)\n", " s_dist_space = np.linspace( min(s_phase_plot)-10, max(s_phase_plot)+10, 500 )\n", " ax[-1].plot( s_dist_space, s_kde(s_dist_space), color='b')\n", "\n", " for a in ax:\n", " a.axvline(p_phase.mean()*processed_input.shape[-1], color='r', linestyle='--', label='P')\n", " a.axvline(s_phase.mean()*processed_input.shape[-1], color='b', linestyle='--', label='S')\n", "\n", " ax[-1].set_xlabel('Time, samples')\n", " ax[-1].set_ylabel('Uncert., samples')\n", " ax[-1].legend()\n", "\n", " plt.subplots_adjust(hspace=0., wspace=0.)\n", "\n", " # Convert the plot to an image and return it\n", " fig.canvas.draw()\n", " image = np.array(fig.canvas.renderer.buffer_rgba())\n", " plt.close(fig)\n", " return image\n", "\n", "def bin_distances(distances, bin_size=10):\n", " # Bin the distances into groups of `bin_size` kilometers\n", " binned_distances = {}\n", " for i, distance in enumerate(distances):\n", " bin_index = distance // bin_size\n", " if bin_index not in binned_distances:\n", " binned_distances[bin_index] = (distance, i)\n", " elif i < binned_distances[bin_index][1]:\n", " binned_distances[bin_index] = (distance, i)\n", "\n", " # Select the first distance in each bin and its index\n", " first_distances = []\n", " for bin_index in binned_distances:\n", " first_distance, first_distance_index = binned_distances[bin_index]\n", " first_distances.append(first_distance_index)\n", " \n", " return first_distances\n", "\n", "def variance_coefficient(residuals):\n", " # calculate the variance of the residuals\n", " var = residuals.var()\n", " # scale the variance to a coefficient between 0 and 1\n", " coeff = 1 - (var / (residuals.max() - residuals.min()))\n", " return coeff\n", "\n", "def predict_on_section(client_name, timestamp, eq_lat, eq_lon, radius_km, source_depth_km, velocity_model, max_waveforms):\n", " distances, t0s, st_lats, st_lons, waveforms, names = [], [], [], [], [], []\n", " \n", " taup_model = TauPyModel(model=velocity_model)\n", " client = Client(client_name)\n", "\n", " window = radius_km / 111.2\n", " max_waveforms = int(max_waveforms)\n", "\n", " assert eq_lat - window > -90 and eq_lat + window < 90, \"Latitude out of bounds\"\n", " assert eq_lon - window > -180 and eq_lon + window < 180, \"Longitude out of bounds\"\n", "\n", " starttime = obspy.UTCDateTime(timestamp)\n", " endtime = starttime + 120\n", "\n", " try:\n", " print('Starting to download inventory')\n", " inv = client.get_stations(network=\"*\", station=\"*\", location=\"*\", channel=\"*H*\", \n", " starttime=starttime, endtime=endtime, \n", " minlatitude=(eq_lat-window), maxlatitude=(eq_lat+window),\n", " minlongitude=(eq_lon-window), maxlongitude=(eq_lon+window), \n", " level='station')\n", " print('Finished downloading inventory')\n", " except (IndexError, FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException):\n", " fig, ax = plt.subplots()\n", " ax.text(0.5,0.5,'Something is wrong with the data provider, try another')\n", " fig.canvas.draw();\n", " image = np.array(fig.canvas.renderer.buffer_rgba())\n", " plt.close(fig)\n", " return image\n", " \n", " waveforms = []\n", " cached_waveforms = glob(\"data/cached/*.mseed\")\n", "\n", " for network in inv:\n", " # Skip the SYntetic networks\n", " if network.code == 'SY':\n", " continue\n", " for station in network:\n", " print(f\"Processing {network.code}.{station.code}...\")\n", " distance = locations2degrees(eq_lat, eq_lon, station.latitude, station.longitude)\n", "\n", " arrivals = taup_model.get_travel_times(source_depth_in_km=source_depth_km, \n", " distance_in_degree=distance, \n", " phase_list=[\"P\", \"S\"])\n", "\n", " if len(arrivals) > 0:\n", "\n", " starttime = obspy.UTCDateTime(timestamp) + arrivals[0].time - 15\n", " endtime = starttime + 60\n", " try:\n", " if f\"data/cached/{network.code}_{station.code}_{starttime}.mseed\" not in cached_waveforms:\n", " print('Downloading waveform')\n", " waveform = client.get_waveforms(network=network.code, station=station.code, location=\"*\", channel=\"*\", \n", " starttime=starttime, endtime=endtime)\n", " waveform.write(f\"data/cached/{network.code}_{station.code}_{starttime}.mseed\", format=\"MSEED\")\n", " print('Finished downloading and caching waveform')\n", " else:\n", " print('Reading cached waveform')\n", " waveform = obspy.read(f\"data/cached/{network.code}_{station.code}_{starttime}.mseed\")\n", " \n", "\n", " except (IndexError, FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException):\n", " print(f'Skipping {network.code}_{station.code}_{starttime}')\n", " continue\n", " \n", " waveform = waveform.select(channel=\"H[BH][ZNE]\")\n", " waveform = waveform.merge(fill_value=0)\n", " waveform = waveform[:3].sort(keys=['channel'], reverse=True)\n", "\n", " len_check = [len(x.data) for x in waveform]\n", " if len(set(len_check)) > 1:\n", " continue\n", "\n", " if len(waveform) == 3:\n", " try:\n", " waveform = prepare_waveform(np.stack([x.data for x in waveform]))\n", "\n", " distances.append(distance)\n", " t0s.append(starttime)\n", " st_lats.append(station.latitude)\n", " st_lons.append(station.longitude)\n", " waveforms.append(waveform)\n", " names.append(f\"{network.code}.{station.code}\")\n", "\n", " print(f\"Added {network.code}.{station.code} to the list of waveforms\")\n", "\n", " except:\n", " continue\n", " \n", " \n", " # If there are no waveforms, return an empty plot\n", " if len(waveforms) == 0:\n", " fig, ax = plt.subplots()\n", " ax.text(0.5,0.5,'No waveforms found')\n", " fig.canvas.draw();\n", " image = np.array(fig.canvas.renderer.buffer_rgba())\n", " plt.close(fig)\n", " return image\n", " \n", "\n", " first_distances = bin_distances(distances, bin_size=10/111.2)\n", "\n", " # Edge case when there are way too many waveforms to process\n", " selection_indexes = np.random.choice(first_distances, \n", " np.min([len(first_distances), max_waveforms]),\n", " replace=False)\n", "\n", " waveforms = np.array(waveforms)[selection_indexes]\n", " distances = np.array(distances)[selection_indexes]\n", " t0s = np.array(t0s)[selection_indexes]\n", " st_lats = np.array(st_lats)[selection_indexes]\n", " st_lons = np.array(st_lons)[selection_indexes]\n", " names = np.array(names)[selection_indexes]\n", "\n", " waveforms = [torch.tensor(waveform) for waveform in waveforms]\n", "\n", " print('Starting to run predictions')\n", " with torch.no_grad():\n", " waveforms_torch = torch.vstack(waveforms)\n", " output = model(waveforms_torch)\n", "\n", " p_phases = output[:, 0]\n", " s_phases = output[:, 1]\n", "\n", " # Max confidence - min variance \n", " p_max_confidence = np.min([p_phases[i::len(waveforms)].std() for i in range(len(waveforms))]) \n", " s_max_confidence = np.min([s_phases[i::len(waveforms)].std() for i in range(len(waveforms))])\n", "\n", " print(f\"Starting plotting {len(waveforms)} waveforms\")\n", " fig, ax = plt.subplots(ncols=3, figsize=(10, 3))\n", " \n", " # Plot topography\n", " print('Fetching topography')\n", " params = Topography.DEFAULT.copy()\n", " extra_window = 0.5\n", " params[\"south\"] = np.min([st_lats.min(), eq_lat])-extra_window\n", " params[\"north\"] = np.max([st_lats.max(), eq_lat])+extra_window\n", " params[\"west\"] = np.min([st_lons.min(), eq_lon])-extra_window\n", " params[\"east\"] = np.max([st_lons.max(), eq_lon])+extra_window\n", "\n", " topo_map = Topography(**params)\n", " topo_map.fetch()\n", " topo_map.load()\n", "\n", " print('Plotting topo')\n", " hillshade = es.hillshade(topo_map.da[0], altitude=10)\n", " \n", " topo_map.da.plot(ax = ax[1], cmap='Greys', add_colorbar=False, add_labels=False)\n", " topo_map.da.plot(ax = ax[2], cmap='Greys', add_colorbar=False, add_labels=False)\n", " ax[1].imshow(hillshade, cmap=\"Greys\", alpha=0.5)\n", "\n", " output_picks = pd.DataFrame({'station_name' : [], 'starttime' : [], \n", " 'p_phase, s' : [], 'p_uncertainty, s' : [], \n", " 's_phase, s' : [], 's_uncertainty, s' : [],\n", " 'velocity_p, km/s' : [], 'velocity_s, km/s' : []})\n", " \n", " \n", " for i in range(len(waveforms)):\n", " print(f\"Plotting waveform {i+1}/{len(waveforms)}\")\n", " current_P = p_phases[i::len(waveforms)]\n", " current_S = s_phases[i::len(waveforms)]\n", "\n", " x = [t0s[i] + pd.Timedelta(seconds=k/100) for k in np.linspace(0,6000,6000)]\n", " x = mdates.date2num(x)\n", "\n", " # Normalize confidence for the plot\n", " p_conf = 1/(current_P.std()/p_max_confidence).item()\n", " s_conf = 1/(current_S.std()/s_max_confidence).item()\n", "\n", " ax[0].plot(x, waveforms[i][0, 0]*10+distances[i]*111.2, color='black', alpha=0.5, lw=1)\n", "\n", " ax[0].scatter(x[int(current_P.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='r', alpha=p_conf, marker='|')\n", " ax[0].scatter(x[int(current_S.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='b', alpha=s_conf, marker='|')\n", " ax[0].set_ylabel('Z')\n", "\n", " delta_t = t0s[i].timestamp - obspy.UTCDateTime(timestamp).timestamp\n", "\n", " velocity_p = (distances[i]*111.2)/(delta_t+current_P.mean()*60).item()\n", " velocity_s = (distances[i]*111.2)/(delta_t+current_S.mean()*60).item()\n", "\n", " print(f\"Station {st_lats[i]}, {st_lons[i]} has P velocity {velocity_p} and S velocity {velocity_s}\")\n", "\n", " output_picks = output_picks.append(pd.DataFrame({'station_name': [names[i]], 'starttime' : [str(t0s[i])], \n", " 'p_phase, s' : [(delta_t+current_P.mean()*60).item()], 'p_uncertainty, s' : [current_P.std().item()*60], \n", " 's_phase, s' : [(delta_t+current_S.mean()*60).item()], 's_uncertainty, s' : [current_S.std().item()*60],\n", " 'velocity_p, km/s' : [velocity_p], 'velocity_s, km/s' : [velocity_s]}))\n", " \n", " # Generate an array from st_lat to eq_lat and from st_lon to eq_lon\n", " x = np.linspace(st_lons[i], eq_lon, 50)\n", " y = np.linspace(st_lats[i], eq_lat, 50)\n", " \n", " # Plot the array\n", " ax[1].scatter(x, y, c=np.zeros_like(x)+velocity_p, alpha=0.1, vmin=0, vmax=8)\n", " ax[2].scatter(x, y, c=np.zeros_like(x)+velocity_s, alpha=0.1, vmin=0, vmax=8)\n", "\n", " # Add legend\n", " ax[0].scatter(None, None, color='r', marker='|', label='P')\n", " ax[0].scatter(None, None, color='b', marker='|', label='S')\n", " ax[0].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))\n", " ax[0].xaxis.set_major_locator(mdates.SecondLocator(interval=20))\n", " ax[0].legend()\n", "\n", " print('Plotting stations')\n", " for i in range(1,3):\n", " ax[i].scatter(st_lons, st_lats, color='b', label='Stations')\n", " ax[i].scatter(eq_lon, eq_lat, color='r', marker='*', label='Earthquake')\n", " ax[i].set_aspect('equal')\n", " ax[i].set_xticklabels(ax[i].get_xticks(), rotation = 50)\n", "\n", " fig.subplots_adjust(bottom=0.1, top=0.9, left=0.1, right=0.8,\n", " wspace=0.02, hspace=0.02)\n", " \n", " cb_ax = fig.add_axes([0.83, 0.1, 0.02, 0.8])\n", " cbar = fig.colorbar(ax[2].scatter(None, None, c=velocity_p, alpha=0.5, vmin=0, vmax=8), cax=cb_ax)\n", "\n", " cbar.set_label('Velocity (km/s)')\n", " ax[1].set_title('P Velocity')\n", " ax[2].set_title('S Velocity')\n", "\n", " for a in ax:\n", " a.tick_params(axis='both', which='major', labelsize=8)\n", " \n", " plt.subplots_adjust(hspace=0., wspace=0.5)\n", " fig.canvas.draw();\n", " image = np.array(fig.canvas.renderer.buffer_rgba())\n", " plt.close(fig)\n", "\n", " output_picks.to_csv('data/picks.csv', index=False)\n", " output_csv = 'data/picks.csv'\n", "\n", " return image, output_picks, output_csv\n", "\n", "def download_picks(output_picks):\n", " output_csv = io.BytesIO()\n", " output_picks.to_csv(output_csv, index=False)\n", " output_csv.seek(0)\n", " return output_csv\n", "\n", "model = torch.jit.load(\"model.pt\")\n", "\n", "with gr.Blocks() as demo:\n", " gr.HTML(\"\"\"\n", "
\n", "

PhaseHunter 🏹\n", "\n", "

\n", " \n", "

Detect P and S seismic phases with uncertainty

\n", " \n", "
\n", "\"\"\")\n", "\n", " with gr.Tab(\"Try on a single station\"):\n", " with gr.Row(): \n", " # Define the input and output types for Gradio\n", " inputs = gr.Dropdown(\n", " [\"data/sample/sample_0.npy\", \n", " \"data/sample/sample_1.npy\", \n", " \"data/sample/sample_2.npy\"], \n", " label=\"Sample waveform\", \n", " info=\"Select one of the samples\",\n", " value = \"data/sample/sample_0.npy\"\n", " )\n", "\n", " upload = gr.File(label=\"Or upload your own waveform\")\n", "\n", " button = gr.Button(\"Predict phases\")\n", " outputs = gr.Image(label='Waveform with Phases Marked', type='numpy', interactive=False)\n", " \n", " button.click(mark_phases, inputs=[inputs, upload], outputs=outputs)\n", " \n", " with gr.Tab(\"Select earthquake from catalogue\"):\n", "\n", " gr.HTML(\"\"\"\n", "
\n", "

Using PhaseHunter to Analyze Seismic Waveforms

\n", "

Select an earthquake from the global earthquake catalogue and the app will download the waveform from the FDSN client of your choice. The app will use a velocity model of your choice to select appropriate time windows for each station within a specified radius of the earthquake.

\n", "

The app will then analyze the waveforms and mark the detected phases on the waveform. Pick data for each waveform is reported in seconds from the start of the waveform.

\n", "

Velocities are derived from distance and travel time determined by PhaseHunter picks (v = distance/predicted_pick_time). The background of the velocity plot is colored by DEM.

\n", "
\n", " \"\"\")\n", " with gr.Row(): \n", " with gr.Column(scale=2):\n", " client_inputs = gr.Dropdown(\n", " choices = list(URL_MAPPINGS.keys()), \n", " label=\"FDSN Client\", \n", " info=\"Select one of the available FDSN clients\",\n", " value = \"IRIS\",\n", " interactive=True\n", " )\n", "\n", " velocity_inputs = gr.Dropdown(\n", " choices = ['1066a', '1066b', 'ak135', \n", " 'ak135f', 'herrin', 'iasp91', \n", " 'jb', 'prem', 'pwdk'], \n", " label=\"1D velocity model\", \n", " info=\"Velocity model for station selection\",\n", " value = \"1066a\",\n", " interactive=True\n", " )\n", "\n", " with gr.Column(scale=2):\n", " timestamp_inputs = gr.Textbox(value='2019-07-04 17:33:49',\n", " placeholder='YYYY-MM-DD HH:MM:SS',\n", " label=\"Timestamp\",\n", " info=\"Timestamp of the earthquake\",\n", " max_lines=1,\n", " interactive=True)\n", " \n", " source_depth_inputs = gr.Number(value=10,\n", " label=\"Source depth (km)\",\n", " info=\"Depth of the earthquake\",\n", " interactive=True)\n", " \n", " with gr.Column(scale=2):\n", " eq_lat_inputs = gr.Number(value=35.766, \n", " label=\"Latitude\", \n", " info=\"Latitude of the earthquake\",\n", " interactive=True)\n", " \n", " eq_lon_inputs = gr.Number(value=-117.605,\n", " label=\"Longitude\",\n", " info=\"Longitude of the earthquake\",\n", " interactive=True)\n", " \n", " with gr.Column(scale=2):\n", " radius_inputs = gr.Slider(minimum=1, \n", " maximum=200, \n", " value=50, label=\"Radius (km)\", \n", " step=10,\n", " info=\"\"\"Select the radius around the earthquake to download data from.\\n \n", " Note that the larger the radius, the longer the app will take to run.\"\"\",\n", " interactive=True)\n", " \n", " max_waveforms_inputs = gr.Slider(minimum=1,\n", " maximum=100,\n", " value=10,\n", " label=\"Max waveforms per section\",\n", " step=1,\n", " info=\"Maximum number of waveforms to show per section\\n (to avoid long prediction times)\",\n", " interactive=True,\n", " )\n", " \n", " button = gr.Button(\"Predict phases\")\n", " output_image = gr.Image(label='Waveforms with Phases Marked', type='numpy', interactive=False)\n", "\n", " with gr.Row():\n", " output_picks = gr.Dataframe(label='Pick data', \n", " type='pandas', \n", " interactive=False)\n", " output_csv = gr.File(label=\"Output File\", file_types=[\".csv\"])\n", "\n", " button.click(predict_on_section, \n", " inputs=[client_inputs, timestamp_inputs, \n", " eq_lat_inputs, eq_lon_inputs, \n", " radius_inputs, source_depth_inputs, \n", " velocity_inputs, max_waveforms_inputs],\n", " outputs=[output_image, output_picks, output_csv])\n", "\n", "demo.launch()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "phasehunter", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.2" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "6bf57068982d7b420bddaaf1d0614a7795947176033057024cf47d8ca2c1c4cd" } } }, "nbformat": 4, "nbformat_minor": 2 }