crimeacs's picture
Fixed imports
784d488
raw
history blame
6.77 kB
# Gradio app that takes seismic waveform as input and marks 2 phases on the waveform as output.
import gradio as gr
import numpy as np
from phasehunter.model import Onset_picker, Updated_onset_picker
from phasehunter.data_preparation import prepare_waveform
import torch
from scipy.stats import gaussian_kde
import obspy
from obspy.clients.fdsn import Client
from obspy.clients.fdsn.header import FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException
from obspy.geodetics.base import locations2degrees
from obspy.taup import TauPyModel
from obspy.taup.helper_classes import SlownessModelError
from obspy.clients.fdsn.header import URL_MAPPINGS
import matplotlib.pyplot as plt
def make_prediction(waveform):
waveform = np.load(waveform)
processed_input = prepare_waveform(waveform)
# Make prediction
with torch.no_grad():
output = model(processed_input)
p_phase = output[:, 0]
s_phase = output[:, 1]
return processed_input, p_phase, s_phase
def mark_phases(waveform):
processed_input, p_phase, s_phase = make_prediction(waveform)
# Create a plot of the waveform with the phases marked
if sum(processed_input[0][2] == 0): #if input is 1C
fig, ax = plt.subplots(nrows=2, figsize=(10, 2), sharex=True)
ax[0].plot(processed_input[0][0])
ax[0].set_ylabel('Norm. Ampl.')
else: #if input is 3C
fig, ax = plt.subplots(nrows=4, figsize=(10, 6), sharex=True)
ax[0].plot(processed_input[0][0])
ax[1].plot(processed_input[0][1])
ax[2].plot(processed_input[0][2])
ax[0].set_ylabel('Z')
ax[1].set_ylabel('N')
ax[2].set_ylabel('E')
p_phase_plot = p_phase*processed_input.shape[-1]
p_kde = gaussian_kde(p_phase_plot)
p_dist_space = np.linspace( min(p_phase_plot)-10, max(p_phase_plot)+10, 500 )
ax[-1].plot( p_dist_space, p_kde(p_dist_space), color='r')
s_phase_plot = s_phase*processed_input.shape[-1]
s_kde = gaussian_kde(s_phase_plot)
s_dist_space = np.linspace( min(s_phase_plot)-10, max(s_phase_plot)+10, 500 )
ax[-1].plot( s_dist_space, s_kde(s_dist_space), color='b')
for a in ax:
a.axvline(p_phase.mean()*processed_input.shape[-1], color='r', linestyle='--', label='P')
a.axvline(s_phase.mean()*processed_input.shape[-1], color='b', linestyle='--', label='S')
ax[-1].set_xlabel('Time, samples')
ax[-1].set_ylabel('Uncert.')
ax[-1].legend()
plt.subplots_adjust(hspace=0., wspace=0.)
# Convert the plot to an image and return it
fig.canvas.draw()
image = np.array(fig.canvas.renderer.buffer_rgba())
plt.close(fig)
return image
def download_data(timestamp, eq_lat, eq_lon, client_name, radius_km):
client = Client(client_name)
window = radius_km / 111.2
assert eq_lat - window > -90 and eq_lat + window < 90, "Latitude out of bounds"
assert eq_lon - window > -180 and eq_lon + window < 180, "Longitude out of bounds"
starttime = obspy.UTCDateTime(timestamp)
endtime = startime + 120
inv = client.get_stations(network="*", station="*", location="*", channel="*H*",
starttime=obspy.UTCDateTime(starttime), endtime=endtime,
minlatitude=eq_lat-window, maxlatitude=eq_lat+window,
minlongitude=eq_lon-window, maxlongitude=eq_lon+window,
level='channel')
for network in inv:
for station in network:
print(station)
# waveform = client.get_waveforms(network=network.code, station=station.code, location="*", channel="*",
# starttime=obspy.UTCDateTime(start_date), endtime=obspy.UTCDateTime(end_date))
return 0
model = Onset_picker.load_from_checkpoint("./weights.ckpt",
picker=Updated_onset_picker(),
learning_rate=3e-4)
model.eval()
# # Create the Gradio interface
# gr.Interface(mark_phases, inputs, outputs, title='PhaseHunter').launch()
with gr.Blocks() as demo:
gr.Markdown("# PhaseHunter")
with gr.Tab("Default example"):
# Define the input and output types for Gradio
inputs = gr.Dropdown(
["data/sample/sample_0.npy",
"data/sample/sample_1.npy",
"data/sample/sample_2.npy"],
label="Sample waveform",
info="Select one of the samples",
value = "data/sample/sample_0.npy"
)
button = gr.Button("Predict phases")
outputs = gr.outputs.Image(label='Waveform with Phases Marked', type='numpy')
button.click(mark_phases, inputs=inputs, outputs=outputs)
with gr.Tab("Select earthquake from catalogue"):
gr.Markdown('TEST')
client_inputs = gr.Dropdown(
choices = list(URL_MAPPINGS.keys()),
label="FDSN Client",
info="Select one of the available FDSN clients",
value = "IRIS",
interactive=True
)
with gr.Row():
timestamp_inputs = gr.Textbox(value='2019-07-04 17:33:49',
placeholder='YYYY-MM-DD HH:MM:SS',
label="Timestamp",
info="Timestamp of the earthquake",
max_lines=1,
interactive=True)
eq_lat_inputs = gr.Number(value=35.766,
label="Latitude",
info="Latitude of the earthquake",
interactive=True)
eq_lo_inputs = gr.Number(value=117.605,
label="Longitude",
info="Longitude of the earthquake",
interactive=True)
radius_inputs = gr.Slider(minimum=1,
maximum=150,
value=50, label="Radius (km)",
info="Select the radius around the earthquake to download data from",
interactive=True)
button = gr.Button("Predict phases")
button.click(mark_phases, inputs=inputs, outputs=outputs)
with gr.Tab("Predict on your own waveform"):
gr.Markdown("""
Please upload your waveform in .npy (numpy) format.
Your waveform should be sampled at 100 sps and have 3 (Z, N, E) or 1 (Z) channels.
""")
button.click(download_data, inputs=[timestamp_inputs, eq_lat_inputs,eq_lo_inputs, radius_inputs], outputs=outputs)
demo.launch()