Real-CUG / upcunet_v3.py
crawly's picture
Duplicate from lindenleaf/Real-CUGAN
97dd258
import torch
from torch import nn as nn
from torch.nn import functional as F
import os, sys
import numpy as np
root_path = os.path.abspath('.')
sys.path.append(root_path)
class SEBlock(nn.Module):
def __init__(self, in_channels, reduction=8, bias=False):
super(SEBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, in_channels // reduction, 1, 1, 0, bias=bias)
self.conv2 = nn.Conv2d(in_channels // reduction, in_channels, 1, 1, 0, bias=bias)
def forward(self, x):
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
x0 = torch.mean(x.float(), dim=(2, 3), keepdim=True).half()
else:
x0 = torch.mean(x, dim=(2, 3), keepdim=True)
x0 = self.conv1(x0)
x0 = F.relu(x0, inplace=True)
x0 = self.conv2(x0)
x0 = torch.sigmoid(x0)
x = torch.mul(x, x0)
return x
def forward_mean(self, x, x0):
x0 = self.conv1(x0)
x0 = F.relu(x0, inplace=True)
x0 = self.conv2(x0)
x0 = torch.sigmoid(x0)
x = torch.mul(x, x0)
return x
class UNetConv(nn.Module):
def __init__(self, in_channels, mid_channels, out_channels, se):
super(UNetConv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, 3, 1, 0),
nn.LeakyReLU(0.1, inplace=True),
nn.Conv2d(mid_channels, out_channels, 3, 1, 0),
nn.LeakyReLU(0.1, inplace=True),
)
if se:
self.seblock = SEBlock(out_channels, reduction=8, bias=True)
else:
self.seblock = None
def forward(self, x):
z = self.conv(x)
if self.seblock is not None:
z = self.seblock(z)
return z
class UNet1(nn.Module):
def __init__(self, in_channels, out_channels, deconv):
super(UNet1, self).__init__()
self.conv1 = UNetConv(in_channels, 32, 64, se=False)
self.conv1_down = nn.Conv2d(64, 64, 2, 2, 0)
self.conv2 = UNetConv(64, 128, 64, se=True)
self.conv2_up = nn.ConvTranspose2d(64, 64, 2, 2, 0)
self.conv3 = nn.Conv2d(64, 64, 3, 1, 0)
if deconv:
self.conv_bottom = nn.ConvTranspose2d(64, out_channels, 4, 2, 3)
else:
self.conv_bottom = nn.Conv2d(64, out_channels, 3, 1, 0)
for m in self.modules():
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv1_down(x1)
x2 = F.leaky_relu(x2, 0.1, inplace=True)
x2 = self.conv2(x2)
x2 = self.conv2_up(x2)
x2 = F.leaky_relu(x2, 0.1, inplace=True)
x1 = F.pad(x1, (-4, -4, -4, -4))
x3 = self.conv3(x1 + x2)
x3 = F.leaky_relu(x3, 0.1, inplace=True)
z = self.conv_bottom(x3)
return z
def forward_a(self, x):
x1 = self.conv1(x)
x2 = self.conv1_down(x1)
x2 = F.leaky_relu(x2, 0.1, inplace=True)
x2 = self.conv2.conv(x2)
return x1, x2
def forward_b(self, x1, x2):
x2 = self.conv2_up(x2)
x2 = F.leaky_relu(x2, 0.1, inplace=True)
x1 = F.pad(x1, (-4, -4, -4, -4))
x3 = self.conv3(x1 + x2)
x3 = F.leaky_relu(x3, 0.1, inplace=True)
z = self.conv_bottom(x3)
return z
class UNet1x3(nn.Module):
def __init__(self, in_channels, out_channels, deconv):
super(UNet1x3, self).__init__()
self.conv1 = UNetConv(in_channels, 32, 64, se=False)
self.conv1_down = nn.Conv2d(64, 64, 2, 2, 0)
self.conv2 = UNetConv(64, 128, 64, se=True)
self.conv2_up = nn.ConvTranspose2d(64, 64, 2, 2, 0)
self.conv3 = nn.Conv2d(64, 64, 3, 1, 0)
if deconv:
self.conv_bottom = nn.ConvTranspose2d(64, out_channels, 5, 3, 2)
else:
self.conv_bottom = nn.Conv2d(64, out_channels, 3, 1, 0)
for m in self.modules():
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv1_down(x1)
x2 = F.leaky_relu(x2, 0.1, inplace=True)
x2 = self.conv2(x2)
x2 = self.conv2_up(x2)
x2 = F.leaky_relu(x2, 0.1, inplace=True)
x1 = F.pad(x1, (-4, -4, -4, -4))
x3 = self.conv3(x1 + x2)
x3 = F.leaky_relu(x3, 0.1, inplace=True)
z = self.conv_bottom(x3)
return z
def forward_a(self, x):
x1 = self.conv1(x)
x2 = self.conv1_down(x1)
x2 = F.leaky_relu(x2, 0.1, inplace=True)
x2 = self.conv2.conv(x2)
return x1, x2
def forward_b(self, x1, x2):
x2 = self.conv2_up(x2)
x2 = F.leaky_relu(x2, 0.1, inplace=True)
x1 = F.pad(x1, (-4, -4, -4, -4))
x3 = self.conv3(x1 + x2)
x3 = F.leaky_relu(x3, 0.1, inplace=True)
z = self.conv_bottom(x3)
return z
class UNet2(nn.Module):
def __init__(self, in_channels, out_channels, deconv):
super(UNet2, self).__init__()
self.conv1 = UNetConv(in_channels, 32, 64, se=False)
self.conv1_down = nn.Conv2d(64, 64, 2, 2, 0)
self.conv2 = UNetConv(64, 64, 128, se=True)
self.conv2_down = nn.Conv2d(128, 128, 2, 2, 0)
self.conv3 = UNetConv(128, 256, 128, se=True)
self.conv3_up = nn.ConvTranspose2d(128, 128, 2, 2, 0)
self.conv4 = UNetConv(128, 64, 64, se=True)
self.conv4_up = nn.ConvTranspose2d(64, 64, 2, 2, 0)
self.conv5 = nn.Conv2d(64, 64, 3, 1, 0)
if deconv:
self.conv_bottom = nn.ConvTranspose2d(64, out_channels, 4, 2, 3)
else:
self.conv_bottom = nn.Conv2d(64, out_channels, 3, 1, 0)
for m in self.modules():
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv1_down(x1)
x2 = F.leaky_relu(x2, 0.1, inplace=True)
x2 = self.conv2(x2)
x3 = self.conv2_down(x2)
x3 = F.leaky_relu(x3, 0.1, inplace=True)
x3 = self.conv3(x3)
x3 = self.conv3_up(x3)
x3 = F.leaky_relu(x3, 0.1, inplace=True)
x2 = F.pad(x2, (-4, -4, -4, -4))
x4 = self.conv4(x2 + x3)
x4 = self.conv4_up(x4)
x4 = F.leaky_relu(x4, 0.1, inplace=True)
x1 = F.pad(x1, (-16, -16, -16, -16))
x5 = self.conv5(x1 + x4)
x5 = F.leaky_relu(x5, 0.1, inplace=True)
z = self.conv_bottom(x5)
return z
def forward_a(self, x): # conv234结尾有se
x1 = self.conv1(x)
x2 = self.conv1_down(x1)
x2 = F.leaky_relu(x2, 0.1, inplace=True)
x2 = self.conv2.conv(x2)
return x1, x2
def forward_b(self, x2): # conv234结尾有se
x3 = self.conv2_down(x2)
x3 = F.leaky_relu(x3, 0.1, inplace=True)
x3 = self.conv3.conv(x3)
return x3
def forward_c(self, x2, x3): # conv234结尾有se
x3 = self.conv3_up(x3)
x3 = F.leaky_relu(x3, 0.1, inplace=True)
x2 = F.pad(x2, (-4, -4, -4, -4))
x4 = self.conv4.conv(x2 + x3)
return x4
def forward_d(self, x1, x4): # conv234结尾有se
x4 = self.conv4_up(x4)
x4 = F.leaky_relu(x4, 0.1, inplace=True)
x1 = F.pad(x1, (-16, -16, -16, -16))
x5 = self.conv5(x1 + x4)
x5 = F.leaky_relu(x5, 0.1, inplace=True)
z = self.conv_bottom(x5)
return z
class UpCunet2x(nn.Module): # 完美tile,全程无损
def __init__(self, in_channels=3, out_channels=3):
super(UpCunet2x, self).__init__()
self.unet1 = UNet1(in_channels, out_channels, deconv=True)
self.unet2 = UNet2(in_channels, out_channels, deconv=False)
def forward(self, x, tile_mode): # 1.7G
n, c, h0, w0 = x.shape
if (tile_mode == 0): # 不tile
ph = ((h0 - 1) // 2 + 1) * 2
pw = ((w0 - 1) // 2 + 1) * 2
x = F.pad(x, (18, 18 + pw - w0, 18, 18 + ph - h0), 'reflect') # 需要保证被2整除
x = self.unet1.forward(x)
x0 = self.unet2.forward(x)
x1 = F.pad(x, (-20, -20, -20, -20))
x = torch.add(x0, x1)
if (w0 != pw or h0 != ph): x = x[:, :, :h0 * 2, :w0 * 2]
return x
elif (tile_mode == 1): # 对长边减半
if (w0 >= h0):
crop_size_w = ((w0 - 1) // 4 * 4 + 4) // 2 # 减半后能被2整除,所以要先被4整除
crop_size_h = (h0 - 1) // 2 * 2 + 2 # 能被2整除
else:
crop_size_h = ((h0 - 1) // 4 * 4 + 4) // 2 # 减半后能被2整除,所以要先被4整除
crop_size_w = (w0 - 1) // 2 * 2 + 2 # 能被2整除
crop_size = (crop_size_h, crop_size_w) # 6.6G
elif (tile_mode == 2): # hw都减半
crop_size = (((h0 - 1) // 4 * 4 + 4) // 2, ((w0 - 1) // 4 * 4 + 4) // 2) # 5.6G
elif (tile_mode == 3): # hw都三分之一
crop_size = (((h0 - 1) // 6 * 6 + 6) // 3, ((w0 - 1) // 6 * 6 + 6) // 3) # 4.2G
elif (tile_mode == 4): # hw都四分之一
crop_size = (((h0 - 1) // 8 * 8 + 8) // 4, ((w0 - 1) // 8 * 8 + 8) // 4) # 3.7G
ph = ((h0 - 1) // crop_size[0] + 1) * crop_size[0]
pw = ((w0 - 1) // crop_size[1] + 1) * crop_size[1]
x = F.pad(x, (18, 18 + pw - w0, 18, 18 + ph - h0), 'reflect')
n, c, h, w = x.shape
se_mean0 = torch.zeros((n, 64, 1, 1)).to(x.device)
if ("Half" in x.type()):
se_mean0 = se_mean0.half()
n_patch = 0
tmp_dict = {}
opt_res_dict = {}
for i in range(0, h - 36, crop_size[0]):
tmp_dict[i] = {}
for j in range(0, w - 36, crop_size[1]):
x_crop = x[:, :, i:i + crop_size[0] + 36, j:j + crop_size[1] + 36]
n, c1, h1, w1 = x_crop.shape
tmp0, x_crop = self.unet1.forward_a(x_crop)
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(x_crop.float(), dim=(2, 3), keepdim=True).half()
else:
tmp_se_mean = torch.mean(x_crop, dim=(2, 3), keepdim=True)
se_mean0 += tmp_se_mean
n_patch += 1
tmp_dict[i][j] = (tmp0, x_crop)
se_mean0 /= n_patch
se_mean1 = torch.zeros((n, 128, 1, 1)).to(x.device) # 64#128#128#64
if ("Half" in x.type()):
se_mean1 = se_mean1.half()
for i in range(0, h - 36, crop_size[0]):
for j in range(0, w - 36, crop_size[1]):
tmp0, x_crop = tmp_dict[i][j]
x_crop = self.unet1.conv2.seblock.forward_mean(x_crop, se_mean0)
opt_unet1 = self.unet1.forward_b(tmp0, x_crop)
tmp_x1, tmp_x2 = self.unet2.forward_a(opt_unet1)
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x2.float(), dim=(2, 3), keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x2, dim=(2, 3), keepdim=True)
se_mean1 += tmp_se_mean
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2)
se_mean1 /= n_patch
se_mean0 = torch.zeros((n, 128, 1, 1)).to(x.device) # 64#128#128#64
if ("Half" in x.type()):
se_mean0 = se_mean0.half()
for i in range(0, h - 36, crop_size[0]):
for j in range(0, w - 36, crop_size[1]):
opt_unet1, tmp_x1, tmp_x2 = tmp_dict[i][j]
tmp_x2 = self.unet2.conv2.seblock.forward_mean(tmp_x2, se_mean1)
tmp_x3 = self.unet2.forward_b(tmp_x2)
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x3.float(), dim=(2, 3), keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x3, dim=(2, 3), keepdim=True)
se_mean0 += tmp_se_mean
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2, tmp_x3)
se_mean0 /= n_patch
se_mean1 = torch.zeros((n, 64, 1, 1)).to(x.device) # 64#128#128#64
if ("Half" in x.type()):
se_mean1 = se_mean1.half()
for i in range(0, h - 36, crop_size[0]):
for j in range(0, w - 36, crop_size[1]):
opt_unet1, tmp_x1, tmp_x2, tmp_x3 = tmp_dict[i][j]
tmp_x3 = self.unet2.conv3.seblock.forward_mean(tmp_x3, se_mean0)
tmp_x4 = self.unet2.forward_c(tmp_x2, tmp_x3)
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x4.float(), dim=(2, 3), keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x4, dim=(2, 3), keepdim=True)
se_mean1 += tmp_se_mean
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x4)
se_mean1 /= n_patch
for i in range(0, h - 36, crop_size[0]):
opt_res_dict[i] = {}
for j in range(0, w - 36, crop_size[1]):
opt_unet1, tmp_x1, tmp_x4 = tmp_dict[i][j]
tmp_x4 = self.unet2.conv4.seblock.forward_mean(tmp_x4, se_mean1)
x0 = self.unet2.forward_d(tmp_x1, tmp_x4)
x1 = F.pad(opt_unet1, (-20, -20, -20, -20))
x_crop = torch.add(x0, x1) # x0是unet2的最终输出
opt_res_dict[i][j] = x_crop
del tmp_dict
torch.cuda.empty_cache()
res = torch.zeros((n, c, h * 2 - 72, w * 2 - 72)).to(x.device)
if ("Half" in x.type()):
res = res.half()
for i in range(0, h - 36, crop_size[0]):
for j in range(0, w - 36, crop_size[1]):
res[:, :, i * 2:i * 2 + h1 * 2 - 72, j * 2:j * 2 + w1 * 2 - 72] = opt_res_dict[i][j]
del opt_res_dict
torch.cuda.empty_cache()
if (w0 != pw or h0 != ph): res = res[:, :, :h0 * 2, :w0 * 2]
return res #
class UpCunet3x(nn.Module): # 完美tile,全程无损
def __init__(self, in_channels=3, out_channels=3):
super(UpCunet3x, self).__init__()
self.unet1 = UNet1x3(in_channels, out_channels, deconv=True)
self.unet2 = UNet2(in_channels, out_channels, deconv=False)
def forward(self, x, tile_mode): # 1.7G
n, c, h0, w0 = x.shape
if (tile_mode == 0): # 不tile
ph = ((h0 - 1) // 4 + 1) * 4
pw = ((w0 - 1) // 4 + 1) * 4
x = F.pad(x, (14, 14 + pw - w0, 14, 14 + ph - h0), 'reflect') # 需要保证被2整除
x = self.unet1.forward(x)
x0 = self.unet2.forward(x)
x1 = F.pad(x, (-20, -20, -20, -20))
x = torch.add(x0, x1)
if (w0 != pw or h0 != ph): x = x[:, :, :h0 * 3, :w0 * 3]
return x
elif (tile_mode == 1): # 对长边减半
if (w0 >= h0):
crop_size_w = ((w0 - 1) // 8 * 8 + 8) // 2 # 减半后能被4整除,所以要先被8整除
crop_size_h = (h0 - 1) // 4 * 4 + 4 # 能被4整除
else:
crop_size_h = ((h0 - 1) // 8 * 8 + 8) // 2 # 减半后能被4整除,所以要先被8整除
crop_size_w = (w0 - 1) // 4 * 4 + 4 # 能被4整除
crop_size = (crop_size_h, crop_size_w) # 6.6G
elif (tile_mode == 2): # hw都减半
crop_size = (((h0 - 1) // 8 * 8 + 8) // 2, ((w0 - 1) // 8 * 8 + 8) // 2) # 5.6G
elif (tile_mode == 3): # hw都三分之一
crop_size = (((h0 - 1) // 12 * 12 + 12) // 3, ((w0 - 1) // 12 * 12 + 12) // 3) # 4.2G
elif (tile_mode == 4): # hw都四分之一
crop_size = (((h0 - 1) // 16 * 16 + 16) // 4, ((w0 - 1) // 16 * 16 + 16) // 4) # 3.7G
ph = ((h0 - 1) // crop_size[0] + 1) * crop_size[0]
pw = ((w0 - 1) // crop_size[1] + 1) * crop_size[1]
x = F.pad(x, (14, 14 + pw - w0, 14, 14 + ph - h0), 'reflect')
n, c, h, w = x.shape
se_mean0 = torch.zeros((n, 64, 1, 1)).to(x.device)
if ("Half" in x.type()):
se_mean0 = se_mean0.half()
n_patch = 0
tmp_dict = {}
opt_res_dict = {}
for i in range(0, h - 28, crop_size[0]):
tmp_dict[i] = {}
for j in range(0, w - 28, crop_size[1]):
x_crop = x[:, :, i:i + crop_size[0] + 28, j:j + crop_size[1] + 28]
n, c1, h1, w1 = x_crop.shape
tmp0, x_crop = self.unet1.forward_a(x_crop)
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(x_crop.float(), dim=(2, 3), keepdim=True).half()
else:
tmp_se_mean = torch.mean(x_crop, dim=(2, 3), keepdim=True)
se_mean0 += tmp_se_mean
n_patch += 1
tmp_dict[i][j] = (tmp0, x_crop)
se_mean0 /= n_patch
se_mean1 = torch.zeros((n, 128, 1, 1)).to(x.device) # 64#128#128#64
if ("Half" in x.type()):
se_mean1 = se_mean1.half()
for i in range(0, h - 28, crop_size[0]):
for j in range(0, w - 28, crop_size[1]):
tmp0, x_crop = tmp_dict[i][j]
x_crop = self.unet1.conv2.seblock.forward_mean(x_crop, se_mean0)
opt_unet1 = self.unet1.forward_b(tmp0, x_crop)
tmp_x1, tmp_x2 = self.unet2.forward_a(opt_unet1)
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x2.float(), dim=(2, 3), keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x2, dim=(2, 3), keepdim=True)
se_mean1 += tmp_se_mean
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2)
se_mean1 /= n_patch
se_mean0 = torch.zeros((n, 128, 1, 1)).to(x.device) # 64#128#128#64
if ("Half" in x.type()):
se_mean0 = se_mean0.half()
for i in range(0, h - 28, crop_size[0]):
for j in range(0, w - 28, crop_size[1]):
opt_unet1, tmp_x1, tmp_x2 = tmp_dict[i][j]
tmp_x2 = self.unet2.conv2.seblock.forward_mean(tmp_x2, se_mean1)
tmp_x3 = self.unet2.forward_b(tmp_x2)
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x3.float(), dim=(2, 3), keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x3, dim=(2, 3), keepdim=True)
se_mean0 += tmp_se_mean
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2, tmp_x3)
se_mean0 /= n_patch
se_mean1 = torch.zeros((n, 64, 1, 1)).to(x.device) # 64#128#128#64
if ("Half" in x.type()):
se_mean1 = se_mean1.half()
for i in range(0, h - 28, crop_size[0]):
for j in range(0, w - 28, crop_size[1]):
opt_unet1, tmp_x1, tmp_x2, tmp_x3 = tmp_dict[i][j]
tmp_x3 = self.unet2.conv3.seblock.forward_mean(tmp_x3, se_mean0)
tmp_x4 = self.unet2.forward_c(tmp_x2, tmp_x3)
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x4.float(), dim=(2, 3), keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x4, dim=(2, 3), keepdim=True)
se_mean1 += tmp_se_mean
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x4)
se_mean1 /= n_patch
for i in range(0, h - 28, crop_size[0]):
opt_res_dict[i] = {}
for j in range(0, w - 28, crop_size[1]):
opt_unet1, tmp_x1, tmp_x4 = tmp_dict[i][j]
tmp_x4 = self.unet2.conv4.seblock.forward_mean(tmp_x4, se_mean1)
x0 = self.unet2.forward_d(tmp_x1, tmp_x4)
x1 = F.pad(opt_unet1, (-20, -20, -20, -20))
x_crop = torch.add(x0, x1) # x0是unet2的最终输出
opt_res_dict[i][j] = x_crop #
del tmp_dict
torch.cuda.empty_cache()
res = torch.zeros((n, c, h * 3 - 84, w * 3 - 84)).to(x.device)
if ("Half" in x.type()):
res = res.half()
for i in range(0, h - 28, crop_size[0]):
for j in range(0, w - 28, crop_size[1]):
res[:, :, i * 3:i * 3 + h1 * 3 - 84, j * 3:j * 3 + w1 * 3 - 84] = opt_res_dict[i][j]
del opt_res_dict
torch.cuda.empty_cache()
if (w0 != pw or h0 != ph): res = res[:, :, :h0 * 3, :w0 * 3]
return res
class UpCunet4x(nn.Module): # 完美tile,全程无损
def __init__(self, in_channels=3, out_channels=3):
super(UpCunet4x, self).__init__()
self.unet1 = UNet1(in_channels, 64, deconv=True)
self.unet2 = UNet2(64, 64, deconv=False)
self.ps = nn.PixelShuffle(2)
self.conv_final = nn.Conv2d(64, 12, 3, 1, padding=0, bias=True)
def forward(self, x, tile_mode):
n, c, h0, w0 = x.shape
x00 = x
if (tile_mode == 0): # 不tile
ph = ((h0 - 1) // 2 + 1) * 2
pw = ((w0 - 1) // 2 + 1) * 2
x = F.pad(x, (19, 19 + pw - w0, 19, 19 + ph - h0), 'reflect') # 需要保证被2整除
x = self.unet1.forward(x)
x0 = self.unet2.forward(x)
x1 = F.pad(x, (-20, -20, -20, -20))
x = torch.add(x0, x1)
x = self.conv_final(x)
x = F.pad(x, (-1, -1, -1, -1))
x = self.ps(x)
if (w0 != pw or h0 != ph): x = x[:, :, :h0 * 4, :w0 * 4]
x += F.interpolate(x00, scale_factor=4, mode='nearest')
return x
elif (tile_mode == 1): # 对长边减半
if (w0 >= h0):
crop_size_w = ((w0 - 1) // 4 * 4 + 4) // 2 # 减半后能被2整除,所以要先被4整除
crop_size_h = (h0 - 1) // 2 * 2 + 2 # 能被2整除
else:
crop_size_h = ((h0 - 1) // 4 * 4 + 4) // 2 # 减半后能被2整除,所以要先被4整除
crop_size_w = (w0 - 1) // 2 * 2 + 2 # 能被2整除
crop_size = (crop_size_h, crop_size_w) # 6.6G
elif (tile_mode == 2): # hw都减半
crop_size = (((h0 - 1) // 4 * 4 + 4) // 2, ((w0 - 1) // 4 * 4 + 4) // 2) # 5.6G
elif (tile_mode == 3): # hw都三分之一
crop_size = (((h0 - 1) // 6 * 6 + 6) // 3, ((w0 - 1) // 6 * 6 + 6) // 3) # 4.1G
elif (tile_mode == 4): # hw都四分之一
crop_size = (((h0 - 1) // 8 * 8 + 8) // 4, ((w0 - 1) // 8 * 8 + 8) // 4) # 3.7G
ph = ((h0 - 1) // crop_size[0] + 1) * crop_size[0]
pw = ((w0 - 1) // crop_size[1] + 1) * crop_size[1]
x = F.pad(x, (19, 19 + pw - w0, 19, 19 + ph - h0), 'reflect')
n, c, h, w = x.shape
se_mean0 = torch.zeros((n, 64, 1, 1)).to(x.device)
if ("Half" in x.type()):
se_mean0 = se_mean0.half()
n_patch = 0
tmp_dict = {}
opt_res_dict = {}
for i in range(0, h - 38, crop_size[0]):
tmp_dict[i] = {}
for j in range(0, w - 38, crop_size[1]):
x_crop = x[:, :, i:i + crop_size[0] + 38, j:j + crop_size[1] + 38]
n, c1, h1, w1 = x_crop.shape
tmp0, x_crop = self.unet1.forward_a(x_crop)
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(x_crop.float(), dim=(2, 3), keepdim=True).half()
else:
tmp_se_mean = torch.mean(x_crop, dim=(2, 3), keepdim=True)
se_mean0 += tmp_se_mean
n_patch += 1
tmp_dict[i][j] = (tmp0, x_crop)
se_mean0 /= n_patch
se_mean1 = torch.zeros((n, 128, 1, 1)).to(x.device) # 64#128#128#64
if ("Half" in x.type()):
se_mean1 = se_mean1.half()
for i in range(0, h - 38, crop_size[0]):
for j in range(0, w - 38, crop_size[1]):
tmp0, x_crop = tmp_dict[i][j]
x_crop = self.unet1.conv2.seblock.forward_mean(x_crop, se_mean0)
opt_unet1 = self.unet1.forward_b(tmp0, x_crop)
tmp_x1, tmp_x2 = self.unet2.forward_a(opt_unet1)
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x2.float(), dim=(2, 3), keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x2, dim=(2, 3), keepdim=True)
se_mean1 += tmp_se_mean
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2)
se_mean1 /= n_patch
se_mean0 = torch.zeros((n, 128, 1, 1)).to(x.device) # 64#128#128#64
if ("Half" in x.type()):
se_mean0 = se_mean0.half()
for i in range(0, h - 38, crop_size[0]):
for j in range(0, w - 38, crop_size[1]):
opt_unet1, tmp_x1, tmp_x2 = tmp_dict[i][j]
tmp_x2 = self.unet2.conv2.seblock.forward_mean(tmp_x2, se_mean1)
tmp_x3 = self.unet2.forward_b(tmp_x2)
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x3.float(), dim=(2, 3), keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x3, dim=(2, 3), keepdim=True)
se_mean0 += tmp_se_mean
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2, tmp_x3)
se_mean0 /= n_patch
se_mean1 = torch.zeros((n, 64, 1, 1)).to(x.device) # 64#128#128#64
if ("Half" in x.type()):
se_mean1 = se_mean1.half()
for i in range(0, h - 38, crop_size[0]):
for j in range(0, w - 38, crop_size[1]):
opt_unet1, tmp_x1, tmp_x2, tmp_x3 = tmp_dict[i][j]
tmp_x3 = self.unet2.conv3.seblock.forward_mean(tmp_x3, se_mean0)
tmp_x4 = self.unet2.forward_c(tmp_x2, tmp_x3)
if ("Half" in x.type()): # torch.HalfTensor/torch.cuda.HalfTensor
tmp_se_mean = torch.mean(tmp_x4.float(), dim=(2, 3), keepdim=True).half()
else:
tmp_se_mean = torch.mean(tmp_x4, dim=(2, 3), keepdim=True)
se_mean1 += tmp_se_mean
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x4)
se_mean1 /= n_patch
for i in range(0, h - 38, crop_size[0]):
opt_res_dict[i] = {}
for j in range(0, w - 38, crop_size[1]):
opt_unet1, tmp_x1, tmp_x4 = tmp_dict[i][j]
tmp_x4 = self.unet2.conv4.seblock.forward_mean(tmp_x4, se_mean1)
x0 = self.unet2.forward_d(tmp_x1, tmp_x4)
x1 = F.pad(opt_unet1, (-20, -20, -20, -20))
x_crop = torch.add(x0, x1) # x0是unet2的最终输出
x_crop = self.conv_final(x_crop)
x_crop = F.pad(x_crop, (-1, -1, -1, -1))
x_crop = self.ps(x_crop)
opt_res_dict[i][j] = x_crop
del tmp_dict
torch.cuda.empty_cache()
res = torch.zeros((n, c, h * 4 - 152, w * 4 - 152)).to(x.device)
if ("Half" in x.type()):
res = res.half()
for i in range(0, h - 38, crop_size[0]):
for j in range(0, w - 38, crop_size[1]):
# print(opt_res_dict[i][j].shape,res[:, :, i * 4:i * 4 + h1 * 4 - 144, j * 4:j * 4 + w1 * 4 - 144].shape)
res[:, :, i * 4:i * 4 + h1 * 4 - 152, j * 4:j * 4 + w1 * 4 - 152] = opt_res_dict[i][j]
del opt_res_dict
torch.cuda.empty_cache()
if (w0 != pw or h0 != ph): res = res[:, :, :h0 * 4, :w0 * 4]
res += F.interpolate(x00, scale_factor=4, mode='nearest')
return res #
class RealWaifuUpScaler(object):
def __init__(self, scale, weight_path, half, device):
weight = torch.load(weight_path, map_location="cpu")
self.model = eval("UpCunet%sx" % scale)()
if (half == True):
self.model = self.model.half().to(device)
else:
self.model = self.model.to(device)
self.model.load_state_dict(weight, strict=True)
self.model.eval()
self.half = half
self.device = device
def np2tensor(self, np_frame):
if (self.half == False):
return torch.from_numpy(np.transpose(np_frame, (2, 0, 1))).unsqueeze(0).to(self.device).float() / 255
else:
return torch.from_numpy(np.transpose(np_frame, (2, 0, 1))).unsqueeze(0).to(self.device).half() / 255
def tensor2np(self, tensor):
if (self.half == False):
return (
np.transpose((tensor.data.squeeze() * 255.0).round().clamp_(0, 255).byte().cpu().numpy(), (1, 2, 0)))
else:
return (np.transpose((tensor.data.squeeze().float() * 255.0).round().clamp_(0, 255).byte().cpu().numpy(),
(1, 2, 0)))
def __call__(self, frame, tile_mode):
with torch.no_grad():
tensor = self.np2tensor(frame)
result = self.tensor2np(self.model(tensor, tile_mode))
return result
if __name__ == "__main__":
###########inference_img
import time, cv2, sys
from time import time as ttime
for weight_path, scale in [("weights_v3/up2x-latest-denoise3x.pth", 2), ("weights_v3/up3x-latest-denoise3x.pth", 3),
("weights_v3/up4x-latest-denoise3x.pth", 4)]:
for tile_mode in [0, 1, 2, 3, 4]:
upscaler2x = RealWaifuUpScaler(scale, weight_path, half=True, device="cuda:0")
input_dir = "%s/input_dir1" % root_path
output_dir = "%s/opt-dir-all-test" % root_path
os.makedirs(output_dir, exist_ok=True)
for name in os.listdir(input_dir):
print(name)
tmp = name.split(".")
inp_path = os.path.join(input_dir, name)
suffix = tmp[-1]
prefix = ".".join(tmp[:-1])
tmp_path = os.path.join(root_path, "tmp", "%s.%s" % (int(time.time() * 1000000), suffix))
print(inp_path, tmp_path)
# 支持中文路径
# os.link(inp_path, tmp_path)#win用硬链接
os.symlink(inp_path, tmp_path) # linux用软链接
frame = cv2.imread(tmp_path)[:, :, [2, 1, 0]]
t0 = ttime()
result = upscaler2x(frame, tile_mode=tile_mode)[:, :, ::-1]
t1 = ttime()
print(prefix, "done", t1 - t0)
tmp_opt_path = os.path.join(root_path, "tmp", "%s.%s" % (int(time.time() * 1000000), suffix))
cv2.imwrite(tmp_opt_path, result)
n = 0
while (1):
if (n == 0):
suffix = "_%sx_tile%s.png" % (scale, tile_mode)
else:
suffix = "_%sx_tile%s_%s.png" % (scale, tile_mode, n) #
if (os.path.exists(os.path.join(output_dir, prefix + suffix)) == False):
break
else:
n += 1
final_opt_path = os.path.join(output_dir, prefix + suffix)
os.rename(tmp_opt_path, final_opt_path)
os.remove(tmp_path)