Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import os, tempfile | |
import torch | |
import py3Dmol | |
from huggingface_hub import login | |
# import spaces | |
from esm.utils.structure.protein_chain import ProteinChain | |
from esm.models.esm3 import ESM3 | |
from esm.sdk.api import ( | |
ESMProtein, | |
GenerationConfig, | |
) | |
from gradio_molecule3d import Molecule3D | |
theme = gr.themes.Monochrome( | |
primary_hue="gray", | |
) | |
## Function to get model from Hugging Face using token | |
# @spaces.GPU() | |
def get_model(model_name, token): | |
login(token=token) | |
if torch.cuda.is_available(): | |
model = ESM3.from_pretrained(model_name, device=torch.device("cuda")) | |
else: | |
model = ESM3.from_pretrained(model_name, device=torch.device("cpu")) | |
# model = ESM3.from_pretrained(model_name, device=torch.device("cpu")) | |
return model | |
## Function to get PDB data | |
def get_pdb(pdb_id, chain_id): | |
pdb = ProteinChain.from_rcsb(pdb_id, chain_id) | |
# return [pdb.sequence, render_pdb(pdb.to_pdb_string())] | |
return pdb | |
## Function to generate rep for 3D structure | |
def make_reps(res_start=None, res_end=None, main_color="whiteCarbon", highlight_color="redCarbon", main_style="cartoon", highlight_style="cartoon"): | |
residue_range = f"{res_start}-{res_end}" if res_start != res_end else "" | |
return [ | |
{ | |
"model": 0, | |
"chain": "", | |
"resname": "", | |
"style": main_style, | |
"color": main_color, | |
"residue_range": "", | |
"around": 0, | |
"byres": False, | |
"visible": True | |
}, | |
{ | |
"model": 0, | |
"chain": "", | |
"resname": "", | |
"style": highlight_style, | |
"color": highlight_color, | |
"residue_range": residue_range, | |
"around": 0, | |
"byres": False, | |
"visible": True | |
}] | |
## Function to render 3D structure | |
def render_pdb(pdb_id, chain_id, res_start, res_end, pdb_string=None): | |
if pdb_string is None: | |
pdb_string = get_pdb(pdb_id, chain_id).to_pdb_string() | |
## Write to temporary file and read back in to get the 3D structure | |
tmp_pdb = tempfile.NamedTemporaryFile(delete=False, prefix=f"{pdb_id}_chain{chain_id}_", suffix=".pdb") | |
tmp_pdb.write(str.encode(pdb_string)) | |
return Molecule3D(tmp_pdb.name, reps=make_reps(res_start=res_start, res_end=res_end)) | |
## Function for Scaffolding | |
def scaffold(model_name, token, pdb_id, chain_id, motif_start, motif_end, prompt_length, insert_size): | |
pdb = get_pdb(pdb_id, chain_id) | |
## Get motif sequence and atom37 positions | |
motif_inds = np.arange(motif_start, motif_end) | |
motif_sequence = pdb[motif_inds].sequence | |
motif_atom37_positions = pdb[motif_inds].atom37_positions | |
## Create sequence prompt | |
sequence_prompt = ["_"]*prompt_length | |
sequence_prompt[insert_size:insert_size+len(motif_sequence)] = list(motif_sequence) | |
sequence_prompt = "".join(sequence_prompt) | |
## Create structure prompt | |
structure_prompt = torch.full((prompt_length, 37, 3), np.nan) | |
structure_prompt[insert_size:insert_size+len(motif_atom37_positions)] = torch.tensor(motif_atom37_positions) | |
## Create protein prompt and sequence generation config | |
protein_prompt = ESMProtein(sequence=sequence_prompt, coordinates=structure_prompt) | |
sequence_generation_config = GenerationConfig(track="sequence", | |
num_steps=sequence_prompt.count("_") // 2, | |
temperature=0.5) | |
## Generate sequence | |
model = get_model(model_name, token) | |
sequence_generation = model.generate(protein_prompt, sequence_generation_config) | |
generated_sequence = sequence_generation.sequence | |
## Generate structure | |
structure_prediction_config = GenerationConfig( | |
track="structure", # We want ESM3 to generate tokens for the structure track | |
num_steps=len(sequence_generation) // 8, | |
temperature=0.7, | |
) | |
structure_prediction_prompt = ESMProtein(sequence=sequence_generation.sequence) | |
structure_prediction = model.generate(structure_prediction_prompt, structure_prediction_config) | |
## Convert the generated structure to a back into a ProteinChain object | |
structure_prediction_chain = structure_prediction.to_protein_chain() | |
motif_inds_in_generation = np.arange(insert_size, insert_size+len(motif_sequence)) | |
structure_prediction_chain.align(pdb, mobile_inds=motif_inds_in_generation, target_inds=motif_inds) | |
# crmsd = structure_prediction_chain.rmsd(renal_dipep_chain, mobile_inds=motif_inds_in_generation, target_inds=motif_inds) | |
structure_orig_highlight = render_pdb(pdb_id, chain_id, res_start=motif_start, res_end=motif_end) | |
structure_new_highlight = render_pdb(pdb_id, chain_id, res_start=insert_size, res_end=insert_size+len(motif_sequence), | |
pdb_string=structure_prediction_chain.to_pdb_string()) | |
return [ | |
pdb.sequence, | |
motif_sequence, | |
structure_orig_highlight, | |
# motif_atom37_positions, | |
sequence_prompt, | |
# structure_prompt, | |
# protein_prompt | |
generated_sequence, | |
# structure_prediction, | |
# structure_prediction_chain, | |
structure_new_highlight | |
] | |
## Function for Secondary Structure Editing | |
def ss_edit(model_name, token, pdb_id, chain_id, region_start, region_end, shortened_region_length, shortening_ss8): | |
pdb = get_pdb(pdb_id, chain_id) | |
edit_region = np.arange(region_start, region_end) | |
## Construct a sequence prompt that masks the (shortened) helix-coil-helix region, but leaves the flanking regions unmasked | |
sequence_prompt = pdb.sequence[:edit_region[0]] + "_" * shortened_region_length + pdb.sequence[edit_region[-1] + 1:] | |
## Construct a secondary structure prompt that retains the secondary structure of the flanking regions, and shortens the lengths of helices in the helix-coil-helix region | |
ss8_prompt = shortening_ss8[:edit_region[0]] + (((shortened_region_length - 3) // 2) * "H" + "C"*3 + ((shortened_region_length - 3) // 2) * "H") + shortening_ss8[edit_region[-1] + 1:] | |
## Save original sequence and secondary structure | |
original_sequence = pdb.sequence | |
original_ss8 = shortening_ss8 | |
original_ss8_region = " "*edit_region[0] + shortening_ss8[edit_region[0]:edit_region[-1]+1] | |
proposed_ss8_region = " "*edit_region[0] + ss8_prompt[edit_region[0]:edit_region[0]+shortened_region_length] | |
## Create protein prompt | |
protein_prompt = ESMProtein(sequence=sequence_prompt, secondary_structure=ss8_prompt) | |
## Generatre sequence | |
model = get_model(model_name, token) | |
sequence_generation = model.generate(protein_prompt, GenerationConfig(track="sequence", num_steps=protein_prompt.sequence.count("_") // 2, temperature=0.5)) | |
## Generate structure | |
structure_prediction = model.generate(ESMProtein(sequence=sequence_generation.sequence), GenerationConfig(track="structure", num_steps=len(protein_prompt) // 4, temperature=0)) | |
structure_prediction_chain = structure_prediction.to_protein_chain() | |
structure_orig_highlight = render_pdb(pdb_id, chain_id, res_start=region_start, res_end=region_end) | |
structure_new_highlight = render_pdb(pdb_id, chain_id, res_start=region_start, res_end=region_end, | |
pdb_string=structure_prediction_chain.to_pdb_string()) | |
return [ | |
original_sequence, | |
original_ss8, | |
original_ss8_region, | |
structure_orig_highlight, | |
sequence_prompt, | |
ss8_prompt, | |
proposed_ss8_region, | |
# protein_prompt, | |
sequence_generation, | |
structure_new_highlight | |
] | |
## Function for SASA Editing | |
def sasa_edit(model_name, token, pdb_id, chain_id, span_start, span_end, n_samples): | |
pdb = get_pdb(pdb_id, chain_id) | |
structure_prompt = torch.full((len(pdb), 37, 3), torch.nan) | |
structure_prompt[span_start:span_end] = torch.tensor(pdb[span_start:span_end].atom37_positions, dtype=torch.float32) | |
sasa_prompt = [None]*len(pdb) | |
sasa_prompt[span_start:span_end] = [40.0]*(span_end - span_start) | |
protein_prompt = ESMProtein(sequence="_"*len(pdb), coordinates=structure_prompt, sasa=sasa_prompt) | |
model = get_model(model_name, token) | |
generated_proteins = [] | |
for i in range(n_samples): | |
## Generate sequence | |
sequence_generation = model.generate(protein_prompt, GenerationConfig(track="sequence", num_steps=len(protein_prompt) // 8, temperature=0.7)) | |
## Fold Protein | |
structure_prediction = model.generate(ESMProtein(sequence=sequence_generation.sequence), GenerationConfig(track="structure", num_steps=len(protein_prompt) // 32)) | |
generated_proteins.append(structure_prediction) | |
## Sort generations by ptm | |
generated_proteins = sorted(generated_proteins, key=lambda x: x.ptm.item(), reverse=True) | |
structure_orig_highlight = render_pdb(pdb_id, chain_id, res_start=span_start, res_end=span_end) | |
structure_new_highlight = render_pdb(pdb_id, chain_id, res_start=span_start, res_end=span_end, | |
pdb_string=generated_proteins[0].to_protein_chain().to_pdb_string()) | |
return [ | |
protein_prompt.sequence, | |
structure_orig_highlight, | |
# [seq.sequence for seq in sequence_generation], | |
# [pro.sequence for pro in generated_proteins] | |
structure_new_highlight | |
] | |
## Interface for main Scaffolding Example | |
scaffold_app = gr.Interface( | |
fn=scaffold, | |
inputs=[ | |
gr.Dropdown(label="Model Name", choices=["esm3_sm_open_v1"], value="esm3_sm_open_v1", allow_custom_value=True), | |
gr.Textbox(value = "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", label="Hugging Face Token", type="password"), | |
gr.Textbox(value="1ITU", label = "PDB Code"), | |
gr.Textbox(value="A", label = "Chain"), | |
gr.Number(value=123, label="Motif Start"), | |
gr.Number(value=146, label="Motif End"), | |
gr.Number(value=200, label="Prompt Length"), | |
gr.Number(value=72, label="Insert Size") | |
], | |
outputs=[ | |
gr.Textbox(label="Sequence"), | |
gr.Textbox(label="Motif Sequence"), | |
Molecule3D(label="Original Structure"), | |
# gr.Textbox(label="Motif Positions") | |
gr.Textbox(label="Sequence Prompt"), | |
# gr.Textbox(label="Structure Prompt"), | |
# gr.Textbox(label="Protein Prompt"), | |
gr.Textbox(label="Generated Sequence"), | |
Molecule3D(label="Generated Structure") | |
] | |
) | |
## Interface for "Secondary Structure Editing Example: Helix Shortening" | |
ss_app = gr.Interface( | |
fn=ss_edit, | |
inputs=[ | |
gr.Dropdown(label="Model Name", choices=["esm3_sm_open_v1"], value="esm3_sm_open_v1", allow_custom_value=True), | |
gr.Textbox(value = "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", label="Hugging Face Token", type="password"), | |
gr.Textbox(value = "7XBQ", label="PDB ID"), | |
gr.Textbox(value = "A", label="Chain ID"), | |
gr.Number(value=38, label="Edit Region Start"), | |
gr.Number(value=111, label="Edit Region End"), | |
gr.Number(value=45, label="Shortened Region Length"), | |
gr.Textbox(value="CCCSHHHHHHHHHHHTTCHHHHHHHHHHHHHTCSSCCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHTTCHHHHHHHHHHHHHHHHHHHHHHHHHHHHIIIIIGGGCCSHHHHHHHHHHHHHHHHHHHHHCCHHHHHHHHHHHHHHHHHHHHHHHHHSCTTCHHHHHHHHHHHHHIIIIICCHHHHHHHHHHHHHHHHTTCTTCCSSHHHHHHHHHHHHHHHHHHHC", label="SS8 Shortening") | |
], | |
outputs=[ | |
gr.Textbox(label="Original Sequence"), | |
gr.Textbox(label="Original SS8"), | |
gr.Textbox(label="Original SS8 Edit Region"), | |
Molecule3D(label="Original Structure"), | |
gr.Textbox(label="Sequence Prompt"), | |
gr.Textbox(label="Edited SS8 Prompt"), | |
gr.Textbox(label="Proposed SS8 of Edit Region"), | |
# gr.Textbox(label="Protein Prompt"), | |
gr.Textbox(label="Generated Sequence"), | |
Molecule3D(label="Generated Structure") | |
] | |
) | |
## Interface for "SASA Editing Example: Exposing a buried helix" | |
sasa_app = gr.Interface( | |
fn=sasa_edit, | |
inputs=[ | |
gr.Dropdown(label="Model Name", choices=["esm3_sm_open_v1"], value="esm3_sm_open_v1", allow_custom_value=True), | |
gr.Textbox(value = "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", label="Hugging Face Token", type="password"), | |
gr.Textbox(value = "1LBS", label="PDB ID"), | |
gr.Textbox(value = "A", label="Chain ID"), | |
gr.Number(value=105, label="Span Start"), | |
gr.Number(value=116, label="Span End"), | |
# gr.Textbox(value="CCSSCCCCSSCHHHHHHTEEETTBBTTBCSSEEEEECCTTCCHHHHHTTTHHHHHHHTTCEEEEECCTTTTCSCHHHHHHHHHHHHHHHHHHTTSCCEEEEEETHHHHHHHHHHHHCGGGGGTEEEEEEESCCTTCBGGGHHHHHTTCBCHHHHHTBTTCHHHHHHHHTTTTBCSSCEEEEECTTCSSSCCCCSSSTTSTTCCBTSEEEEHHHHHCTTCCCCSHHHHHBHHHHHHHHHHHHCTTSSCCGGGCCSTTCCCSBCTTSCHHHHHHHHSTHHHHHHHHHHSCCBSSCCCCCGGGGGGSTTCEETTEECCC", label="SS8 String") | |
gr.Number(value=1, label="Number of Samples") | |
], | |
outputs = [ | |
gr.Textbox(label="Protein Prompt"), | |
Molecule3D(label="Original Structure"), | |
# gr.Textbox(label="Generated Sequences"), | |
# gr.Textbox(label="Generated Proteins") | |
Molecule3D(label="Best Generated Structure") | |
] | |
) | |
protein_viewer = gr.Interface( | |
fn=render_pdb, | |
inputs=[ | |
gr.Textbox(value = "1LBS", label="PDB ID"), | |
gr.Textbox(value = "A", label="Chain ID"), | |
gr.Number(value=10, label="Residue Highlight Start"), | |
gr.Number(value=20, label="Residue Highlight End") | |
], | |
outputs=[ | |
Molecule3D(label="3D Structure") | |
] | |
) | |
## Main Interface | |
with gr.Blocks(theme=theme) as esm_app: | |
with gr.Row(): | |
gr.Markdown( | |
""" | |
# ESM3: A frontier language model for biology. | |
Model Created By: [EvolutionaryScale](https://www.evolutionaryscale.ai) | |
- Press Release: https://www.evolutionaryscale.ai/blog/esm3-release | |
- GitHub: https://github.com/evolutionaryscale/esm | |
- HuggingFace Model: https://huggingface.co/EvolutionaryScale/esm3-sm-open-v1 | |
Spaces App By: [[Colby T. Ford](https://colbyford.com)] from [Tuple, The Cloud Genomics Company](https://tuple.xyz) | |
NOTE: You will need to agree to EvolutionaryScale's [license agreement](https://huggingface.co/EvolutionaryScale/esm3-sm-open-v1) to use the model. Then, create and paste your HuggingFace token in the appropriate field. | |
""" | |
) | |
with gr.Row(): | |
gr.TabbedInterface([ | |
scaffold_app, | |
ss_app, | |
sasa_app, | |
protein_viewer | |
], | |
[ | |
"Scaffolding Example", | |
"Secondary Structure Editing Example", | |
"SASA Editing Example", | |
"PDB Viewer" | |
]) | |
if __name__ == "__main__": | |
esm_app.launch() | |