diffsingerkr / Inference.py
codejin's picture
initial commit
67d041f
import torch
import numpy as np
import logging, yaml, os, sys, argparse, math
import matplotlib.pyplot as plt
from tqdm import tqdm
from librosa import griffinlim
from Modules.Modules import DiffSinger
from Datasets import Inference_Dataset as Dataset, Inference_Collater as Collater
from meldataset import spectral_de_normalize_torch
from Arg_Parser import Recursive_Parse
import matplotlib as mpl
# μœ λ‹ˆμ½”λ“œ κΉ¨μ§ν˜„μƒ ν•΄κ²°
mpl.rcParams['axes.unicode_minus'] = False
# λ‚˜λˆ”κ³ λ”• 폰트 적용
plt.rcParams["font.family"] = 'NanumGothic'
logging.basicConfig(
level=logging.INFO, stream=sys.stdout,
format= '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s'
)
class Inferencer:
def __init__(
self,
hp_path: str,
checkpoint_path: str,
batch_size= 1
):
self.device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
self.hp = Recursive_Parse(yaml.load(
open(hp_path, encoding='utf-8'),
Loader=yaml.Loader
))
self.model = DiffSinger(self.hp).to(self.device)
if self.hp.Feature_Type == 'Mel':
self.vocoder = torch.jit.load('vocoder.pts', map_location='cpu').to(self.device)
if self.hp.Feature_Type == 'Spectrogram':
self.feature_range_info_dict = yaml.load(open(self.hp.Spectrogram_Range_Info_Path), Loader=yaml.Loader)
if self.hp.Feature_Type == 'Mel':
self.feature_range_info_dict = yaml.load(open(self.hp.Mel_Range_Info_Path), Loader=yaml.Loader)
self.index_singer_dict = {
value: key
for key, value in yaml.load(open(self.hp.Singer_Info_Path), Loader=yaml.Loader).items()
}
if self.hp.Feature_Type == 'Spectrogram':
self.feature_size = self.hp.Sound.N_FFT // 2 + 1
elif self.hp.Feature_Type == 'Mel':
self.feature_size = self.hp.Sound.Mel_Dim
else:
raise ValueError('Unknown feature type: {}'.format(self.hp.Feature_Type))
self.Load_Checkpoint(checkpoint_path)
self.batch_size = batch_size
def Dataset_Generate(self, message_times_list, lyrics, notes, singers, genres):
token_dict = yaml.load(open(self.hp.Token_Path), Loader=yaml.Loader)
singer_info_dict = yaml.load(open(self.hp.Singer_Info_Path), Loader=yaml.Loader)
genre_info_dict = yaml.load(open(self.hp.Genre_Info_Path), Loader=yaml.Loader)
return torch.utils.data.DataLoader(
dataset= Dataset(
token_dict= token_dict,
singer_info_dict= singer_info_dict,
genre_info_dict= genre_info_dict,
durations= message_times_list,
lyrics= lyrics,
notes= notes,
singers= singers,
genres= genres,
sample_rate= self.hp.Sound.Sample_Rate,
frame_shift= self.hp.Sound.Frame_Shift,
equality_duration= self.hp.Duration.Equality,
consonant_duration= self.hp.Duration.Consonant_Duration
),
shuffle= False,
collate_fn= Collater(
token_dict= token_dict
),
batch_size= self.batch_size,
num_workers= 0,
pin_memory= True
)
def Load_Checkpoint(self, path):
state_dict = torch.load(path, map_location= 'cpu')
self.model.load_state_dict(state_dict['Model']['DiffSVS'])
self.steps = state_dict['Steps']
self.model.eval()
logging.info('Checkpoint loaded at {} steps.'.format(self.steps))
@torch.inference_mode()
def Inference_Step(self, tokens, notes, durations, lengths, singers, genres, singer_labels, ddim_steps):
tokens = tokens.to(self.device, non_blocking=True)
notes = notes.to(self.device, non_blocking=True)
durations = durations.to(self.device, non_blocking=True)
lengths = lengths.to(self.device, non_blocking=True)
singers = singers.to(self.device, non_blocking=True)
genres = genres.to(self.device, non_blocking=True)
linear_predictions, diffusion_predictions, _, _ = self.model(
tokens= tokens,
notes= notes,
durations= durations,
lengths= lengths,
genres= genres,
singers= singers,
ddim_steps= ddim_steps
)
linear_predictions = linear_predictions.clamp(-1.0, 1.0)
diffusion_predictions = diffusion_predictions.clamp(-1.0, 1.0)
linear_prediction_list, diffusion_prediction_list = [], []
for linear_prediction, diffusion_prediction, singer in zip(linear_predictions, diffusion_predictions, singer_labels):
feature_max = self.feature_range_info_dict[singer]['Max']
feature_min = self.feature_range_info_dict[singer]['Min']
linear_prediction_list.append((linear_prediction + 1.0) / 2.0 * (feature_max - feature_min) + feature_min)
diffusion_prediction_list.append((diffusion_prediction + 1.0) / 2.0 * (feature_max - feature_min) + feature_min)
linear_predictions = torch.stack(linear_prediction_list, dim= 0)
diffusion_predictions = torch.stack(diffusion_prediction_list, dim= 0)
if self.hp.Feature_Type == 'Mel':
audios = self.vocoder(diffusion_predictions)
if audios.ndim == 1: # This is temporal because of the vocoder problem.
audios = audios.unsqueeze(0)
audios = [
audio[:min(length * self.hp.Sound.Frame_Shift, audio.size(0))].cpu().numpy()
for audio, length in zip(audios, lengths)
]
elif self.hp.Feature_Type == 'Spectrogram':
audios = []
for prediction, length in zip(
diffusion_predictions,
lengths
):
prediction = spectral_de_normalize_torch(prediction).cpu().numpy()
audio = griffinlim(prediction)[:min(prediction.size(1), length) * self.hp.Sound.Frame_Shift]
audio = (audio / np.abs(audio).max() * 32767.5).astype(np.int16)
audios.append(audio)
return audios
def Inference_Epoch(self, message_times_list, lyrics, notes, singers, genres, ddim_steps= None, use_tqdm= True):
dataloader = self.Dataset_Generate(
message_times_list= message_times_list,
lyrics= lyrics,
notes= notes,
singers= singers,
genres= genres
)
if use_tqdm:
dataloader = tqdm(
dataloader,
desc='[Inference]',
total= math.ceil(len(dataloader.dataset) / self.batch_size)
)
audios = []
for tokens, notes, durations, lengths, singers, genres, singer_labels, lyrics in dataloader:
audios.extend(self.Inference_Step(tokens, notes, durations, lengths, singers, genres, singer_labels, ddim_steps))
return audios