Spaces:
Runtime error
Runtime error
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.loaders import FromOriginalControlnetMixin | |
from diffusers.utils import BaseOutput, logging | |
# from diffusers.models.attention_processor import ( | |
from models_diffusers.attention_processor import ( | |
ADDED_KV_ATTENTION_PROCESSORS, | |
CROSS_ATTENTION_PROCESSORS, | |
AttentionProcessor, | |
AttnAddedKVProcessor, | |
AttnProcessor, | |
) | |
from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps | |
from diffusers.models.modeling_utils import ModelMixin | |
# from diffusers.models.unet_3d_blocks import get_down_block, get_up_block, UNetMidBlockSpatioTemporal | |
from models_diffusers.unet_3d_blocks import UNetMidBlockSpatioTemporal, get_down_block, get_up_block | |
from diffusers.models import UNetSpatioTemporalConditionModel | |
from einops import rearrange | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class ControlNetOutput(BaseOutput): | |
""" | |
The output of [`ControlNetModel`]. | |
Args: | |
down_block_res_samples (`tuple[torch.Tensor]`): | |
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should | |
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be | |
used to condition the original UNet's downsampling activations. | |
mid_down_block_re_sample (`torch.Tensor`): | |
The activation of the midde block (the lowest sample resolution). Each tensor should be of shape | |
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`. | |
Output can be used to condition the original UNet's middle block activation. | |
""" | |
down_block_res_samples: Tuple[torch.Tensor] | |
mid_block_res_sample: torch.Tensor | |
class ControlNetConditioningEmbeddingSVD(nn.Module): | |
""" | |
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN | |
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized | |
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the | |
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides | |
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full | |
model) to encode image-space conditions ... into feature maps ..." | |
""" | |
def __init__( | |
self, | |
conditioning_embedding_channels: int, | |
conditioning_channels: int = 3, | |
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256), | |
with_id_feature: bool = False, | |
feature_channels: int = 160, | |
feature_out_channels: Tuple[int, ...] = (160, 160, 256, 256), | |
): | |
super().__init__() | |
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1) | |
self.blocks = nn.ModuleList([]) | |
for i in range(len(block_out_channels) - 1): | |
channel_in = block_out_channels[i] | |
channel_out = block_out_channels[i + 1] | |
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1)) | |
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2)) | |
self.conv_out = zero_module( | |
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1) | |
) | |
self.with_id_feature = with_id_feature | |
def forward(self, conditioning, point_embedding=None, point_tracks=None): | |
#this seeems appropriate? idk if i should be applying a more complex setup to handle the frames | |
#combine batch and frames dimensions | |
batch_size, frames, channels, height, width = conditioning.size() | |
conditioning = conditioning.view(batch_size * frames, channels, height, width) | |
embedding = self.conv_in(conditioning) | |
embedding = F.silu(embedding) | |
for block in self.blocks: | |
embedding = block(embedding) | |
embedding = F.silu(embedding) | |
embedding = self.conv_out(embedding) | |
assert not self.with_id_feature | |
return embedding | |
class ControlNetSVDModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin): | |
r""" | |
A conditional Spatio-Temporal UNet model that takes a noisy video frames, conditional state, and a timestep and returns a sample | |
shaped output. | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
for all models (such as downloading or saving). | |
Parameters: | |
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): | |
Height and width of input/output sample. | |
in_channels (`int`, *optional*, defaults to 8): Number of channels in the input sample. | |
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output. | |
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "DownBlockSpatioTemporal")`): | |
The tuple of downsample blocks to use. | |
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal")`): | |
The tuple of upsample blocks to use. | |
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): | |
The tuple of output channels for each block. | |
addition_time_embed_dim: (`int`, defaults to 256): | |
Dimension to to encode the additional time ids. | |
projection_class_embeddings_input_dim (`int`, defaults to 768): | |
The dimension of the projection of encoded `added_time_ids`. | |
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. | |
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280): | |
The dimension of the cross attention features. | |
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1): | |
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for | |
[`~models.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal`], [`~models.unet_3d_blocks.CrossAttnUpBlockSpatioTemporal`], | |
[`~models.unet_3d_blocks.UNetMidBlockSpatioTemporal`]. | |
num_attention_heads (`int`, `Tuple[int]`, defaults to `(5, 10, 10, 20)`): | |
The number of attention heads. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
sample_size: Optional[int] = None, | |
in_channels: int = 8, | |
out_channels: int = 4, | |
down_block_types: Tuple[str] = ( | |
"CrossAttnDownBlockSpatioTemporal", | |
"CrossAttnDownBlockSpatioTemporal", | |
"CrossAttnDownBlockSpatioTemporal", | |
"DownBlockSpatioTemporal", | |
), | |
up_block_types: Tuple[str] = ( | |
"UpBlockSpatioTemporal", | |
"CrossAttnUpBlockSpatioTemporal", | |
"CrossAttnUpBlockSpatioTemporal", | |
"CrossAttnUpBlockSpatioTemporal", | |
), | |
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
addition_time_embed_dim: int = 256, | |
projection_class_embeddings_input_dim: int = 768, | |
layers_per_block: Union[int, Tuple[int]] = 2, | |
cross_attention_dim: Union[int, Tuple[int]] = 1024, | |
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, | |
num_attention_heads: Union[int, Tuple[int]] = (5, 10, 10, 20), | |
num_frames: int = 14, | |
conditioning_channels: int = 3, | |
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256), | |
# NOTE: adapter for dift feature | |
with_id_feature: bool = False, | |
feature_channels: int = 160, | |
feature_out_channels: Tuple[int, ...] = (160, 160, 256, 256), | |
): | |
super().__init__() | |
self.sample_size = sample_size | |
print("layers per block is", layers_per_block) | |
# Check inputs | |
if len(down_block_types) != len(up_block_types): | |
raise ValueError( | |
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." | |
) | |
if len(block_out_channels) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." | |
) | |
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." | |
) | |
# input | |
self.conv_in = nn.Conv2d( | |
in_channels, | |
block_out_channels[0], | |
kernel_size=3, | |
padding=1, | |
) | |
# time | |
time_embed_dim = block_out_channels[0] * 4 | |
self.time_proj = Timesteps(block_out_channels[0], True, downscale_freq_shift=0) | |
timestep_input_dim = block_out_channels[0] | |
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) | |
self.add_time_proj = Timesteps(addition_time_embed_dim, True, downscale_freq_shift=0) | |
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) | |
self.down_blocks = nn.ModuleList([]) | |
self.controlnet_down_blocks = nn.ModuleList([]) | |
if isinstance(num_attention_heads, int): | |
num_attention_heads = (num_attention_heads,) * len(down_block_types) | |
if isinstance(cross_attention_dim, int): | |
cross_attention_dim = (cross_attention_dim,) * len(down_block_types) | |
if isinstance(layers_per_block, int): | |
layers_per_block = [layers_per_block] * len(down_block_types) | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) | |
blocks_time_embed_dim = time_embed_dim | |
self.controlnet_cond_embedding = ControlNetConditioningEmbeddingSVD( | |
conditioning_embedding_channels=block_out_channels[0], | |
block_out_channels=conditioning_embedding_out_channels, | |
conditioning_channels=conditioning_channels, | |
# optionally with point feature for conditioning | |
with_id_feature=with_id_feature, | |
feature_channels=feature_channels, | |
feature_out_channels=feature_out_channels, | |
) | |
# down | |
output_channel = block_out_channels[0] | |
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) | |
controlnet_block = zero_module(controlnet_block) | |
self.controlnet_down_blocks.append(controlnet_block) | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = get_down_block( | |
down_block_type, | |
num_layers=layers_per_block[i], | |
transformer_layers_per_block=transformer_layers_per_block[i], | |
in_channels=input_channel, | |
out_channels=output_channel, | |
temb_channels=blocks_time_embed_dim, | |
add_downsample=not is_final_block, | |
resnet_eps=1e-5, | |
cross_attention_dim=cross_attention_dim[i], | |
num_attention_heads=num_attention_heads[i], | |
resnet_act_fn="silu", | |
) | |
self.down_blocks.append(down_block) | |
for _ in range(layers_per_block[i]): | |
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) | |
controlnet_block = zero_module(controlnet_block) | |
self.controlnet_down_blocks.append(controlnet_block) | |
if not is_final_block: | |
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) | |
controlnet_block = zero_module(controlnet_block) | |
self.controlnet_down_blocks.append(controlnet_block) | |
# mid | |
mid_block_channel = block_out_channels[-1] | |
controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1) | |
controlnet_block = zero_module(controlnet_block) | |
self.controlnet_mid_block = controlnet_block | |
self.mid_block = UNetMidBlockSpatioTemporal( | |
block_out_channels[-1], | |
temb_channels=blocks_time_embed_dim, | |
transformer_layers_per_block=transformer_layers_per_block[-1], | |
cross_attention_dim=cross_attention_dim[-1], | |
num_attention_heads=num_attention_heads[-1], | |
) | |
# # out | |
# self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-5) | |
# self.conv_act = nn.SiLU() | |
# self.conv_out = nn.Conv2d( | |
# block_out_channels[0], | |
# out_channels, | |
# kernel_size=3, | |
# padding=1, | |
# ) | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors( | |
name: str, | |
module: torch.nn.Module, | |
processors: Dict[str, AttentionProcessor], | |
): | |
if hasattr(module, "get_processor"): | |
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
def set_default_attn_processor(self): | |
""" | |
Disables custom attention processors and sets the default attention implementation. | |
""" | |
if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | |
processor = AttnProcessor() | |
else: | |
raise ValueError( | |
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" | |
) | |
self.set_attn_processor(processor) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if hasattr(module, "gradient_checkpointing"): | |
module.gradient_checkpointing = value | |
# Copied from diffusers.models.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking | |
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: | |
""" | |
Sets the attention processor to use [feed forward | |
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). | |
Parameters: | |
chunk_size (`int`, *optional*): | |
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually | |
over each tensor of dim=`dim`. | |
dim (`int`, *optional*, defaults to `0`): | |
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) | |
or dim=1 (sequence length). | |
""" | |
if dim not in [0, 1]: | |
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") | |
# By default chunk size is 1 | |
chunk_size = chunk_size or 1 | |
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): | |
if hasattr(module, "set_chunk_feed_forward"): | |
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) | |
for child in module.children(): | |
fn_recursive_feed_forward(child, chunk_size, dim) | |
for module in self.children(): | |
fn_recursive_feed_forward(module, chunk_size, dim) | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
timestep: Union[torch.Tensor, float, int], | |
encoder_hidden_states: torch.Tensor, | |
added_time_ids: torch.Tensor, | |
controlnet_cond: torch.FloatTensor = None, | |
point_embedding: torch.FloatTensor = None, | |
point_tracks: torch.FloatTensor = None, | |
image_only_indicator: Optional[torch.Tensor] = None, | |
return_dict: bool = True, | |
guess_mode: bool = False, | |
conditioning_scale: float = 1.0, | |
) -> Union[ControlNetOutput, Tuple]: | |
r""" | |
The [`UNetSpatioTemporalConditionModel`] forward method. | |
Args: | |
sample (`torch.FloatTensor`): | |
The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`. | |
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. | |
encoder_hidden_states (`torch.FloatTensor`): | |
The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`. | |
added_time_ids: (`torch.FloatTensor`): | |
The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal | |
embeddings and added to the time embeddings. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] instead of a plain | |
tuple. | |
Returns: | |
[`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] or `tuple`: | |
If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is returned, otherwise | |
a `tuple` is returned where the first element is the sample tensor. | |
""" | |
# 1. time | |
timesteps = timestep | |
if not torch.is_tensor(timesteps): | |
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = sample.device.type == "mps" | |
if isinstance(timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
elif len(timesteps.shape) == 0: | |
timesteps = timesteps[None].to(sample.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
batch_size, num_frames = sample.shape[:2] | |
timesteps = timesteps.expand(batch_size) | |
t_emb = self.time_proj(timesteps) | |
# `Timesteps` does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=sample.dtype) | |
emb = self.time_embedding(t_emb) | |
time_embeds = self.add_time_proj(added_time_ids.flatten()) | |
time_embeds = time_embeds.reshape((batch_size, -1)) | |
time_embeds = time_embeds.to(emb.dtype) | |
aug_emb = self.add_embedding(time_embeds) | |
emb = emb + aug_emb | |
# Flatten the batch and frames dimensions | |
# sample: [batch, frames, channels, height, width] -> [batch * frames, channels, height, width] | |
sample = sample.flatten(0, 1) | |
# Repeat the embeddings num_video_frames times | |
# emb: [batch, channels] -> [batch * frames, channels] | |
emb = emb.repeat_interleave(num_frames, dim=0) | |
# encoder_hidden_states: [batch, 1, channels] -> [batch * frames, 1, channels] | |
encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0) | |
# 2. pre-process | |
sample = self.conv_in(sample) | |
# controlnet cond | |
if controlnet_cond != None: | |
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond, point_embedding=point_embedding, point_tracks=point_tracks) | |
sample = sample + controlnet_cond | |
image_only_indicator = torch.zeros(batch_size, num_frames, dtype=sample.dtype, device=sample.device) | |
down_block_res_samples = (sample,) | |
for downsample_block in self.down_blocks: | |
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
# print('has_cross_attention', type(downsample_block)) | |
# models_diffusers.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
) | |
else: | |
# print('no_cross_attention', type(downsample_block)) | |
# models_diffusers.unet_3d_blocks.DownBlockSpatioTemporal | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
image_only_indicator=image_only_indicator, | |
) | |
down_block_res_samples += res_samples | |
# 4. mid | |
sample = self.mid_block( | |
hidden_states=sample, | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
) | |
controlnet_down_block_res_samples = () | |
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks): | |
down_block_res_sample = controlnet_block(down_block_res_sample) | |
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,) | |
down_block_res_samples = controlnet_down_block_res_samples | |
mid_block_res_sample = self.controlnet_mid_block(sample) | |
# 6. scaling | |
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples] | |
mid_block_res_sample = mid_block_res_sample * conditioning_scale | |
if not return_dict: | |
return (down_block_res_samples, mid_block_res_sample) | |
return ControlNetOutput( | |
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample | |
) | |
def from_unet( | |
cls, | |
unet: UNetSpatioTemporalConditionModel, | |
# controlnet_conditioning_channel_order: str = "rgb", | |
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256), | |
load_weights_from_unet: bool = True, | |
conditioning_channels: int = 3, | |
with_id_feature: bool = False, | |
): | |
r""" | |
Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`]. | |
Parameters: | |
unet (`UNet2DConditionModel`): | |
The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied | |
where applicable. | |
""" | |
# transformer_layers_per_block = ( | |
# unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1 | |
# ) | |
# encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None | |
# encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None | |
# addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None | |
# addition_time_embed_dim = ( | |
# unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None | |
# ) | |
print(unet.config) | |
controlnet = cls( | |
in_channels=unet.config.in_channels, | |
down_block_types=unet.config.down_block_types, | |
block_out_channels=unet.config.block_out_channels, | |
addition_time_embed_dim=unet.config.addition_time_embed_dim, | |
transformer_layers_per_block=unet.config.transformer_layers_per_block, | |
cross_attention_dim=unet.config.cross_attention_dim, | |
num_attention_heads=unet.config.num_attention_heads, | |
num_frames=unet.config.num_frames, | |
sample_size=unet.config.sample_size, # Added based on the dict | |
layers_per_block=unet.config.layers_per_block, | |
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim, | |
conditioning_channels = conditioning_channels, | |
conditioning_embedding_out_channels = conditioning_embedding_out_channels, | |
with_id_feature=with_id_feature, | |
) | |
# controlnet rgb channel order ignored, set to not makea difference by default | |
if load_weights_from_unet: | |
controlnet.conv_in.load_state_dict(unet.conv_in.state_dict()) | |
controlnet.time_proj.load_state_dict(unet.time_proj.state_dict()) | |
controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict()) | |
# if controlnet.class_embedding: | |
# controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict()) | |
controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict()) | |
controlnet.mid_block.load_state_dict(unet.mid_block.state_dict()) | |
return controlnet | |
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
if hasattr(module, "get_processor"): | |
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
def set_attn_processor( | |
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False | |
): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor, _remove_lora=_remove_lora) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor | |
def set_default_attn_processor(self): | |
""" | |
Disables custom attention processors and sets the default attention implementation. | |
""" | |
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | |
processor = AttnAddedKVProcessor() | |
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | |
processor = AttnProcessor() | |
else: | |
raise ValueError( | |
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" | |
) | |
self.set_attn_processor(processor, _remove_lora=True) | |
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice | |
def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None: | |
r""" | |
Enable sliced attention computation. | |
When this option is enabled, the attention module splits the input tensor in slices to compute attention in | |
several steps. This is useful for saving some memory in exchange for a small decrease in speed. | |
Args: | |
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): | |
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If | |
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is | |
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` | |
must be a multiple of `slice_size`. | |
""" | |
sliceable_head_dims = [] | |
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): | |
if hasattr(module, "set_attention_slice"): | |
sliceable_head_dims.append(module.sliceable_head_dim) | |
for child in module.children(): | |
fn_recursive_retrieve_sliceable_dims(child) | |
# retrieve number of attention layers | |
for module in self.children(): | |
fn_recursive_retrieve_sliceable_dims(module) | |
num_sliceable_layers = len(sliceable_head_dims) | |
if slice_size == "auto": | |
# half the attention head size is usually a good trade-off between | |
# speed and memory | |
slice_size = [dim // 2 for dim in sliceable_head_dims] | |
elif slice_size == "max": | |
# make smallest slice possible | |
slice_size = num_sliceable_layers * [1] | |
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size | |
if len(slice_size) != len(sliceable_head_dims): | |
raise ValueError( | |
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" | |
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." | |
) | |
for i in range(len(slice_size)): | |
size = slice_size[i] | |
dim = sliceable_head_dims[i] | |
if size is not None and size > dim: | |
raise ValueError(f"size {size} has to be smaller or equal to {dim}.") | |
# Recursively walk through all the children. | |
# Any children which exposes the set_attention_slice method | |
# gets the message | |
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): | |
if hasattr(module, "set_attention_slice"): | |
module.set_attention_slice(slice_size.pop()) | |
for child in module.children(): | |
fn_recursive_set_attention_slice(child, slice_size) | |
reversed_slice_size = list(reversed(slice_size)) | |
for module in self.children(): | |
fn_recursive_set_attention_slice(module, reversed_slice_size) | |
# def _set_gradient_checkpointing(self, module, value: bool = False) -> None: | |
# if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)): | |
# module.gradient_checkpointing = value | |
def zero_module(module): | |
for p in module.parameters(): | |
nn.init.zeros_(p) | |
return module | |