File size: 47,411 Bytes
7615afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
from einops import rearrange

import torch
import torch.nn as nn

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import UNet2DConditionLoadersMixin
from diffusers.utils import BaseOutput, logging
# from diffusers.models.attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor
from models_diffusers.attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.models.modeling_utils import ModelMixin
# from diffusers.models.unet_3d_blocks import UNetMidBlockSpatioTemporal, get_down_block, get_up_block
from models_diffusers.unet_3d_blocks import UNetMidBlockSpatioTemporal, get_down_block, get_up_block


import inspect
import itertools
import os
import re
from collections import OrderedDict
from functools import partial
from typing import Any, Callable, List, Optional, Tuple, Union

from diffusers import __version__
from diffusers.utils import (
    CONFIG_NAME,
    DIFFUSERS_CACHE,
    FLAX_WEIGHTS_NAME,
    HF_HUB_OFFLINE,
    MIN_PEFT_VERSION,
    SAFETENSORS_WEIGHTS_NAME,
    WEIGHTS_NAME,
    _add_variant,
    _get_model_file,
    check_peft_version,
    deprecate,
    is_accelerate_available,
    is_torch_version,
    logging,
)
from diffusers.utils.hub_utils import PushToHubMixin
from diffusers.models.modeling_utils import load_model_dict_into_meta, load_state_dict

if is_torch_version(">=", "1.9.0"):
    _LOW_CPU_MEM_USAGE_DEFAULT = True
else:
    _LOW_CPU_MEM_USAGE_DEFAULT = False

if is_accelerate_available():
    import accelerate
    from accelerate.utils import set_module_tensor_to_device
    from accelerate.utils.versions import is_torch_version

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
class UNetSpatioTemporalConditionOutput(BaseOutput):
    """
    The output of [`UNetSpatioTemporalConditionModel`].

    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
            The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
    """

    sample: torch.FloatTensor = None
    intermediate_features: Optional[Tuple[torch.FloatTensor]] = None


class UNetSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
    r"""
    A conditional Spatio-Temporal UNet model that takes a noisy video frames, conditional state, and a timestep and returns a sample
    shaped output.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).

    Parameters:
        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
            Height and width of input/output sample.
        in_channels (`int`, *optional*, defaults to 8): Number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "DownBlockSpatioTemporal")`):
            The tuple of downsample blocks to use.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal")`):
            The tuple of upsample blocks to use.
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        addition_time_embed_dim: (`int`, defaults to 256):
            Dimension to to encode the additional time ids.
        projection_class_embeddings_input_dim (`int`, defaults to 768):
            The dimension of the projection of encoded `added_time_ids`.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
            The dimension of the cross attention features.
        transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
            The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
            [`~models.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal`], [`~models.unet_3d_blocks.CrossAttnUpBlockSpatioTemporal`],
            [`~models.unet_3d_blocks.UNetMidBlockSpatioTemporal`].
        num_attention_heads (`int`, `Tuple[int]`, defaults to `(5, 10, 10, 20)`):
            The number of attention heads.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        sample_size: Optional[int] = None,
        in_channels: int = 8,
        out_channels: int = 4,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlockSpatioTemporal",
            "CrossAttnDownBlockSpatioTemporal",
            "CrossAttnDownBlockSpatioTemporal",
            "DownBlockSpatioTemporal",
        ),
        up_block_types: Tuple[str] = (
            "UpBlockSpatioTemporal",
            "CrossAttnUpBlockSpatioTemporal",
            "CrossAttnUpBlockSpatioTemporal",
            "CrossAttnUpBlockSpatioTemporal",
        ),
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
        addition_time_embed_dim: int = 256,
        projection_class_embeddings_input_dim: int = 768,
        layers_per_block: Union[int, Tuple[int]] = 2,
        cross_attention_dim: Union[int, Tuple[int]] = 1024,
        transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
        num_attention_heads: Union[int, Tuple[int]] = (5, 10, 10, 20),
        num_frames: int = 25,
    ):
        super().__init__()

        self.sample_size = sample_size

        # Check inputs
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
            )

        if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
            )

        self.mask_token = nn.Parameter(torch.randn(1, 1, 4, 1, 1))

        # input
        self.conv_in = nn.Conv2d(
            in_channels,
            block_out_channels[0],
            kernel_size=3,
            padding=1,
        )

        # time
        time_embed_dim = block_out_channels[0] * 4

        self.time_proj = Timesteps(block_out_channels[0], True, downscale_freq_shift=0)
        timestep_input_dim = block_out_channels[0]

        self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)

        self.add_time_proj = Timesteps(addition_time_embed_dim, True, downscale_freq_shift=0)
        self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)

        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])

        if isinstance(num_attention_heads, int):
            num_attention_heads = (num_attention_heads,) * len(down_block_types)

        if isinstance(cross_attention_dim, int):
            cross_attention_dim = (cross_attention_dim,) * len(down_block_types)

        if isinstance(layers_per_block, int):
            layers_per_block = [layers_per_block] * len(down_block_types)

        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)

        blocks_time_embed_dim = time_embed_dim

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block[i],
                transformer_layers_per_block=transformer_layers_per_block[i],
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=blocks_time_embed_dim,
                add_downsample=not is_final_block,
                resnet_eps=1e-5,
                cross_attention_dim=cross_attention_dim[i],
                num_attention_heads=num_attention_heads[i],
                resnet_act_fn="silu",
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlockSpatioTemporal(
            block_out_channels[-1],
            temb_channels=blocks_time_embed_dim,
            transformer_layers_per_block=transformer_layers_per_block[-1],
            cross_attention_dim=cross_attention_dim[-1],
            num_attention_heads=num_attention_heads[-1],
        )

        # count how many layers upsample the images
        self.num_upsamplers = 0

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        reversed_num_attention_heads = list(reversed(num_attention_heads))
        reversed_layers_per_block = list(reversed(layers_per_block))
        reversed_cross_attention_dim = list(reversed(cross_attention_dim))
        reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))

        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            is_final_block = i == len(block_out_channels) - 1

            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False

            up_block = get_up_block(
                up_block_type,
                num_layers=reversed_layers_per_block[i] + 1,
                transformer_layers_per_block=reversed_transformer_layers_per_block[i],
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
                temb_channels=blocks_time_embed_dim,
                add_upsample=add_upsample,
                resnet_eps=1e-5,
                resolution_idx=i,
                cross_attention_dim=reversed_cross_attention_dim[i],
                num_attention_heads=reversed_num_attention_heads[i],
                resnet_act_fn="silu",
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-5)
        self.conv_act = nn.SiLU()

        self.conv_out = nn.Conv2d(
            block_out_channels[0],
            out_channels,
            kernel_size=3,
            padding=1,
        )

    @property
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(
            name: str,
            module: torch.nn.Module,
            processors: Dict[str, AttentionProcessor],
        ):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
        if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnProcessor()
        else:
            raise ValueError(
                f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
            )

        self.set_attn_processor(processor)

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    # Copied from diffusers.models.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
    def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
        """
        Sets the attention processor to use [feed forward
        chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).

        Parameters:
            chunk_size (`int`, *optional*):
                The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
                over each tensor of dim=`dim`.
            dim (`int`, *optional*, defaults to `0`):
                The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
                or dim=1 (sequence length).
        """
        if dim not in [0, 1]:
            raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")

        # By default chunk size is 1
        chunk_size = chunk_size or 1

        def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
            if hasattr(module, "set_chunk_feed_forward"):
                module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)

            for child in module.children():
                fn_recursive_feed_forward(child, chunk_size, dim)

        for module in self.children():
            fn_recursive_feed_forward(module, chunk_size, dim)

    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
        added_time_ids: torch.Tensor,
        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,  # for t2i-adaptor or controlnet
        mid_block_additional_residual: Optional[torch.Tensor] = None,  # for controlnet
        return_dict: bool = True,
        # return_intermediate_features: bool = False,
    ) -> Union[UNetSpatioTemporalConditionOutput, Tuple]:
        r"""
        The [`UNetSpatioTemporalConditionModel`] forward method.

        Args:
            sample (`torch.FloatTensor`):
                The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`.
            timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
            encoder_hidden_states (`torch.FloatTensor`):
                The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`.
            added_time_ids: (`torch.FloatTensor`):
                The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal
                embeddings and added to the time embeddings.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] instead of a plain
                tuple.
        Returns:
            [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] or `tuple`:
                If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is returned, otherwise
                a `tuple` is returned where the first element is the sample tensor.
        """
        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
            if isinstance(timestep, float):
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        batch_size, num_frames = sample.shape[:2]
        timesteps = timesteps.expand(batch_size)

        t_emb = self.time_proj(timesteps)

        # `Timesteps` does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=sample.dtype)

        emb = self.time_embedding(t_emb)

        time_embeds = self.add_time_proj(added_time_ids.flatten())
        time_embeds = time_embeds.reshape((batch_size, -1))
        time_embeds = time_embeds.to(emb.dtype)
        aug_emb = self.add_embedding(time_embeds)
        emb = emb + aug_emb

        # Flatten the batch and frames dimensions
        # sample: [batch, frames, channels, height, width] -> [batch * frames, channels, height, width]
        sample = sample.flatten(0, 1)
        # Repeat the embeddings num_video_frames times
        # emb: [batch, channels] -> [batch * frames, channels]
        emb = emb.repeat_interleave(num_frames, dim=0)
        # encoder_hidden_states: [batch, 1, channels] -> [batch * frames, 1, channels]
        encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0)

        # 2. pre-process
        sample = self.conv_in(sample)

        image_only_indicator = torch.zeros(batch_size, num_frames, dtype=sample.dtype, device=sample.device)

        is_adapter = is_controlnet = False
        if (down_block_additional_residuals is not None):
            if (mid_block_additional_residual is not None):
                is_controlnet = True
            else:
                is_adapter = True

        down_block_res_samples = (sample,)
        for block_idx, downsample_block in enumerate(self.down_blocks):
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
                # print('has_cross_attention', type(downsample_block))
                # models_diffusers.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal

                additional_residuals = {}
                if is_adapter and len(down_block_additional_residuals) > 0:
                    additional_residuals['additional_residuals'] = down_block_additional_residuals.pop(0)

                sample, res_samples = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
                    image_only_indicator=image_only_indicator,
                    **additional_residuals,
                )
            else:
                # print('no_cross_attention', type(downsample_block))
                # models_diffusers.unet_3d_blocks.DownBlockSpatioTemporal

                sample, res_samples = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    image_only_indicator=image_only_indicator,
                )

                if is_adapter and len(down_block_additional_residuals) > 0:
                    additional_residuals = down_block_additional_residuals.pop(0)
                    if sample.dim() == 5:
                        additional_residuals = rearrange(additional_residuals, '(b f) c h w -> b c f h w', b=sample.shape[0])
                    sample = sample + additional_residuals

            down_block_res_samples += res_samples

        if is_controlnet:
            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(down_block_res_samples, down_block_additional_residuals):
                down_block_res_sample = down_block_res_sample + down_block_additional_residual
                new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)

            down_block_res_samples = new_down_block_res_samples

        # 4. mid
        sample = self.mid_block(
            hidden_states=sample,
            temb=emb,
            encoder_hidden_states=encoder_hidden_states,
            image_only_indicator=image_only_indicator,
        )

        if is_controlnet:
            sample = sample + mid_block_additional_residual

        # if return_intermediate_features:
        intermediate_features = []

        # 5. up
        for block_idx, upsample_block in enumerate(self.up_blocks):
            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
                    image_only_indicator=image_only_indicator,
                )
            else:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    image_only_indicator=image_only_indicator,
                )

            # if return_intermediate_features:
            intermediate_features.append(sample)

        # 6. post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        # 7. Reshape back to original shape
        sample = sample.reshape(batch_size, num_frames, *sample.shape[1:])

        if not return_dict:
            return (sample, intermediate_features)

        return UNetSpatioTemporalConditionOutput(
            sample=sample,
            intermediate_features=intermediate_features,
        )

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], custom_resume=False, **kwargs):
        r"""
        Instantiate a pretrained PyTorch model from a pretrained model configuration.

        The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To
        train the model, set it back in training mode with `model.train()`.

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`~ModelMixin.save_pretrained`].

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info (`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            from_flax (`bool`, *optional*, defaults to `False`):
                Load the model weights from a Flax checkpoint save file.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
            mirror (`str`, *optional*):
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
                A map that specifies where each submodule should go. It doesn't need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
                same device.

                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
            max_memory (`Dict`, *optional*):
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
            offload_folder (`str` or `os.PathLike`, *optional*):
                The path to offload weights if `device_map` contains the value `"disk"`.
            offload_state_dict (`bool`, *optional*):
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
            variant (`str`, *optional*):
                Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
                `safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
                weights. If set to `False`, `safetensors` weights are not loaded.

        <Tip>

        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
        `huggingface-cli login`. You can also activate the special
        ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
        firewalled environment.

        </Tip>

        Example:

        ```py
        from diffusers import UNet2DConditionModel

        unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
        ```

        If you get the error message below, you need to finetune the weights for your downstream task:

        ```bash
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```
        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
        force_download = kwargs.pop("force_download", False)
        from_flax = kwargs.pop("from_flax", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        torch_dtype = kwargs.pop("torch_dtype", None)
        subfolder = kwargs.pop("subfolder", None)
        device_map = kwargs.pop("device_map", None)
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
        offload_state_dict = kwargs.pop("offload_state_dict", False)
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
        variant = kwargs.pop("variant", None)
        use_safetensors = kwargs.pop("use_safetensors", None)

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if device_map is not None and not is_accelerate_available():
            raise NotImplementedError(
                "Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
                " `device_map=None`. You can install accelerate with `pip install accelerate`."
            )

        # Check if we can handle device_map and dispatching the weights
        if device_map is not None and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )

        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )

        # Load config if we don't provide a configuration
        config_path = pretrained_model_name_or_path

        user_agent = {
            "diffusers": __version__,
            "file_type": "model",
            "framework": "pytorch",
        }

        # load config
        config, unused_kwargs, commit_hash = cls.load_config(
            config_path,
            cache_dir=cache_dir,
            return_unused_kwargs=True,
            return_commit_hash=True,
            force_download=force_download,
            resume_download=resume_download,
            proxies=proxies,
            local_files_only=local_files_only,
            use_auth_token=use_auth_token,
            revision=revision,
            subfolder=subfolder,
            device_map=device_map,
            max_memory=max_memory,
            offload_folder=offload_folder,
            offload_state_dict=offload_state_dict,
            user_agent=user_agent,
            **kwargs,
        )

        if not custom_resume:
            # NOTE: update in_channels, for additional mask concatentation
            config['in_channels'] = config['in_channels'] + 1

        # load model
        model_file = None
        if from_flax:
            model_file = _get_model_file(
                pretrained_model_name_or_path,
                weights_name=FLAX_WEIGHTS_NAME,
                cache_dir=cache_dir,
                force_download=force_download,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                subfolder=subfolder,
                user_agent=user_agent,
                commit_hash=commit_hash,
            )
            model = cls.from_config(config, **unused_kwargs)

            # Convert the weights
            from diffusers.models.modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model

            model = load_flax_checkpoint_in_pytorch_model(model, model_file)
        else:
            if use_safetensors:
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path,
                        weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                        commit_hash=commit_hash,
                    )
                except IOError as e:
                    if not allow_pickle:
                        raise e
                    pass
            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path,
                    weights_name=_add_variant(WEIGHTS_NAME, variant),
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                    commit_hash=commit_hash,
                )

            if low_cpu_mem_usage:
                # Instantiate model with empty weights
                with accelerate.init_empty_weights():
                    model = cls.from_config(config, **unused_kwargs)

                # if device_map is None, load the state dict and move the params from meta device to the cpu
                if device_map is None:
                    param_device = "cpu"
                    state_dict = load_state_dict(model_file, variant=variant)

                    if not custom_resume:
                        # NOTE update conv_in_weight
                        conv_in_weight = state_dict['conv_in.weight']
                        assert conv_in_weight.shape == (320, 8, 3, 3)
                        conv_in_weight_new = torch.randn(320, 9, 3, 3).to(conv_in_weight.device).to(conv_in_weight.dtype)
                        conv_in_weight_new[:, :8, :, :] = conv_in_weight
                        state_dict['conv_in.weight'] = conv_in_weight_new

                        # NOTE add mask_token
                        mask_token = torch.randn(1, 1, 4, 1, 1).to(conv_in_weight.device).to(conv_in_weight.dtype)
                        state_dict["mask_token"] = mask_token

                    model._convert_deprecated_attention_blocks(state_dict)
                    # move the params from meta device to cpu
                    missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
                    if len(missing_keys) > 0:
                        raise ValueError(
                            f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are"
                            f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass"
                            " `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize"
                            " those weights or else make sure your checkpoint file is correct."
                        )

                    unexpected_keys = load_model_dict_into_meta(
                        model,
                        state_dict,
                        device=param_device,
                        dtype=torch_dtype,
                        model_name_or_path=pretrained_model_name_or_path,
                    )

                    if cls._keys_to_ignore_on_load_unexpected is not None:
                        for pat in cls._keys_to_ignore_on_load_unexpected:
                            unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

                    if len(unexpected_keys) > 0:
                        logger.warn(
                            f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
                        )

                else:  # else let accelerate handle loading and dispatching.
                    # Load weights and dispatch according to the device_map
                    # by default the device_map is None and the weights are loaded on the CPU
                    try:
                        accelerate.load_checkpoint_and_dispatch(
                            model,
                            model_file,
                            device_map,
                            max_memory=max_memory,
                            offload_folder=offload_folder,
                            offload_state_dict=offload_state_dict,
                            dtype=torch_dtype,
                        )
                    except AttributeError as e:
                        # When using accelerate loading, we do not have the ability to load the state
                        # dict and rename the weight names manually. Additionally, accelerate skips
                        # torch loading conventions and directly writes into `module.{_buffers, _parameters}`
                        # (which look like they should be private variables?), so we can't use the standard hooks
                        # to rename parameters on load. We need to mimic the original weight names so the correct
                        # attributes are available. After we have loaded the weights, we convert the deprecated
                        # names to the new non-deprecated names. Then we _greatly encourage_ the user to convert
                        # the weights so we don't have to do this again.

                        if "'Attention' object has no attribute" in str(e):
                            logger.warn(
                                f"Taking `{str(e)}` while using `accelerate.load_checkpoint_and_dispatch` to mean {pretrained_model_name_or_path}"
                                " was saved with deprecated attention block weight names. We will load it with the deprecated attention block"
                                " names and convert them on the fly to the new attention block format. Please re-save the model after this conversion,"
                                " so we don't have to do the on the fly renaming in the future. If the model is from a hub checkpoint,"
                                " please also re-upload it or open a PR on the original repository."
                            )
                            model._temp_convert_self_to_deprecated_attention_blocks()
                            accelerate.load_checkpoint_and_dispatch(
                                model,
                                model_file,
                                device_map,
                                max_memory=max_memory,
                                offload_folder=offload_folder,
                                offload_state_dict=offload_state_dict,
                                dtype=torch_dtype,
                            )
                            model._undo_temp_convert_self_to_deprecated_attention_blocks()
                        else:
                            raise e

                loading_info = {
                    "missing_keys": [],
                    "unexpected_keys": [],
                    "mismatched_keys": [],
                    "error_msgs": [],
                }
            else:
                model = cls.from_config(config, **unused_kwargs)

                state_dict = load_state_dict(model_file, variant=variant)
                model._convert_deprecated_attention_blocks(state_dict)

                model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
                    model,
                    state_dict,
                    model_file,
                    pretrained_model_name_or_path,
                    ignore_mismatched_sizes=ignore_mismatched_sizes,
                )

                loading_info = {
                    "missing_keys": missing_keys,
                    "unexpected_keys": unexpected_keys,
                    "mismatched_keys": mismatched_keys,
                    "error_msgs": error_msgs,
                }

        if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
            raise ValueError(
                f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
            )
        elif torch_dtype is not None:
            model = model.to(torch_dtype)

        model.register_to_config(_name_or_path=pretrained_model_name_or_path)

        # Set model in evaluation mode to deactivate DropOut modules by default
        model.eval()
        if output_loading_info:
            return model, loading_info

        return model