File size: 31,462 Bytes
b30835a
7615afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fd4aab
64a9e6c
7615afe
64a9e6c
7fd4aab
7615afe
78e77d5
7615afe
 
 
64a9e6c
 
 
 
 
7615afe
7fd4aab
7615afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dc860d
7615afe
5b24944
7615afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b24944
 
 
 
 
 
 
 
7615afe
 
64a9e6c
7615afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b24944
7615afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dc860d
7615afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
import spaces
import datetime
import uuid
from PIL import Image
import numpy as np
import cv2
from scipy.interpolate import interp1d, PchipInterpolator
from packaging import version

import torch
import torchvision
import gradio as gr
# from moviepy.editor import *
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils import load_image, export_to_video, export_to_gif

import os
import sys
sys.path.insert(0, os.getcwd())
from models_diffusers.controlnet_svd import ControlNetSVDModel
from models_diffusers.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
from pipelines.pipeline_stable_video_diffusion_interp_control import StableVideoDiffusionInterpControlPipeline
from gradio_demo.utils_drag import *

import warnings
print("gr file", gr.__file__)

from huggingface_hub import hf_hub_download, snapshot_download

os.makedirs("checkpoints", exist_ok=True)

snapshot_download(
    "wwen1997/framer_512x320",
    local_dir="checkpoints/framer_512x320",
    token=os.environ["TOKEN"],
)

snapshot_download(
    "stabilityai/stable-video-diffusion-img2vid-xt",
    local_dir="checkpoints/stable-video-diffusion-img2vid-xt",
    token=os.environ["TOKEN"],
)


def get_args():
    import argparse
    parser = argparse.ArgumentParser()

    parser.add_argument("--min_guidance_scale", type=float, default=1.0)
    parser.add_argument("--max_guidance_scale", type=float, default=3.0)
    parser.add_argument("--middle_max_guidance", type=int, default=0, choices=[0, 1])
    parser.add_argument("--with_control", type=int, default=1, choices=[0, 1])

    parser.add_argument("--controlnet_cond_scale", type=float, default=1.0)

    parser.add_argument(
        "--dataset",
        type=str,
        default='videoswap',
    )

    parser.add_argument(
        "--model", type=str,
        default="checkpoints/framer_512x320",
        help="Path to model.",
    )

    parser.add_argument("--output_dir", type=str, default="gradio_demo/outputs", help="Path to the output video.")

    parser.add_argument("--seed", type=int, default=42, help="random seed.")

    parser.add_argument("--noise_aug", type=float, default=0.02)

    parser.add_argument("--num_frames", type=int, default=14)
    parser.add_argument("--frame_interval", type=int, default=2)

    parser.add_argument("--width", type=int, default=512)
    parser.add_argument("--height", type=int, default=320)

    parser.add_argument(
        "--num_workers",
        type=int,
        default=8,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )

    args = parser.parse_args()

    return args


args = get_args()
ensure_dirname(args.output_dir)


color_list = []
for i in range(20):
    color = np.concatenate([np.random.random(4)*255], axis=0)
    color_list.append(color)


def interpolate_trajectory(points, n_points):
    x = [point[0] for point in points]
    y = [point[1] for point in points]

    t = np.linspace(0, 1, len(points))

    # fx = interp1d(t, x, kind='cubic')
    # fy = interp1d(t, y, kind='cubic')
    fx = PchipInterpolator(t, x)
    fy = PchipInterpolator(t, y)

    new_t = np.linspace(0, 1, n_points)

    new_x = fx(new_t)
    new_y = fy(new_t)
    new_points = list(zip(new_x, new_y))

    return new_points


def gen_gaussian_heatmap(imgSize=200):
    circle_img = np.zeros((imgSize, imgSize), np.float32)
    circle_mask = cv2.circle(circle_img, (imgSize//2, imgSize//2), imgSize//2, 1, -1)

    isotropicGrayscaleImage = np.zeros((imgSize, imgSize), np.float32)

    for i in range(imgSize):
        for j in range(imgSize):
            isotropicGrayscaleImage[i, j] = 1 / 2 / np.pi / (40 ** 2) * np.exp(
                -1 / 2 * ((i - imgSize / 2) ** 2 / (40 ** 2) + (j - imgSize / 2) ** 2 / (40 ** 2)))

    isotropicGrayscaleImage = isotropicGrayscaleImage * circle_mask
    isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)).astype(np.float32)
    isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)*255).astype(np.uint8)

    return isotropicGrayscaleImage


def get_vis_image(
        target_size=(512 , 512), points=None,  side=20,
        num_frames=14,
        # original_size=(512 , 512), args="", first_frame=None, is_mask = False, model_id=None,
    ):

    # images = []
    vis_images = []
    heatmap = gen_gaussian_heatmap()

    trajectory_list = []
    radius_list = []
    
    for index, point in enumerate(points):
        trajectories = [[int(i[0]), int(i[1])] for i in point]
        trajectory_list.append(trajectories)

        radius = 20
        radius_list.append(radius)  

    if len(trajectory_list) == 0:
        vis_images = [Image.fromarray(np.zeros(target_size, np.uint8)) for _ in range(num_frames)]
        return vis_images

    for idxx, point in enumerate(trajectory_list[0]):
        new_img = np.zeros(target_size, np.uint8)
        vis_img = new_img.copy()
        # ids_embedding = torch.zeros((target_size[0], target_size[1], 320))
        
        if idxx >= args.num_frames:
            break

        # for cc, (mask, trajectory, radius) in enumerate(zip(mask_list, trajectory_list, radius_list)):
        for cc, (trajectory, radius) in enumerate(zip(trajectory_list, radius_list)):
            
            center_coordinate = trajectory[idxx]
            trajectory_ = trajectory[:idxx]
            side = min(radius, 50)
 
            y1 = max(center_coordinate[1] - side,0)
            y2 = min(center_coordinate[1] + side, target_size[0] - 1)
            x1 = max(center_coordinate[0] - side, 0)
            x2 = min(center_coordinate[0] + side, target_size[1] - 1)
            
            if x2-x1>3 and y2-y1>3:
                need_map = cv2.resize(heatmap, (x2-x1, y2-y1))
                new_img[y1:y2, x1:x2] = need_map.copy()
                
                if cc >= 0:
                    vis_img[y1:y2,x1:x2] = need_map.copy()
                    if len(trajectory_) == 1:
                        vis_img[trajectory_[0][1], trajectory_[0][0]] = 255
                    else:
                        for itt in range(len(trajectory_)-1):
                            cv2.line(vis_img, (trajectory_[itt][0], trajectory_[itt][1]), (trajectory_[itt+1][0], trajectory_[itt+1][1]), (255, 255, 255), 3)

        img = new_img

        # Ensure all images are in RGB format
        if len(img.shape) == 2:  # Grayscale image
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
            vis_img = cv2.cvtColor(vis_img, cv2.COLOR_GRAY2RGB)
        elif len(img.shape) == 3 and img.shape[2] == 3:  # Color image in BGR format
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
            vis_img = cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB)
            
        # Convert the numpy array to a PIL image
        # pil_img = Image.fromarray(img)
        # images.append(pil_img)
        vis_images.append(Image.fromarray(vis_img))

    return vis_images


def frames_to_video(frames_folder, output_video_path, fps=7):
    frame_files = os.listdir(frames_folder)
    # sort the frame files by their names
    frame_files = sorted(frame_files, key=lambda x: int(x.split(".")[0]))

    video = []
    for frame_file in frame_files:
        frame_path = os.path.join(frames_folder, frame_file)
        frame = torchvision.io.read_image(frame_path)
        video.append(frame)

    video = torch.stack(video)
    video = rearrange(video, 'T C H W -> T H W C')
    torchvision.io.write_video(output_video_path, video, fps=fps)


def save_gifs_side_by_side(
    batch_output,
    validation_control_images,
    output_folder,
    target_size=(512 , 512),
    duration=200,
    point_tracks=None,
):
    flattened_batch_output = batch_output
    def create_gif(image_list, gif_path, duration=100):
        pil_images = [validate_and_convert_image(img, target_size=target_size) for img in image_list]
        pil_images = [img for img in pil_images if img is not None]
        if pil_images:
            pil_images[0].save(gif_path, save_all=True, append_images=pil_images[1:], loop=0, duration=duration)

        # also save all the pil_images
        tmp_folder = gif_path.replace(".gif", "")
        print(tmp_folder)
        ensure_dirname(tmp_folder)
        tmp_frame_list = []
        for idx, pil_image in enumerate(pil_images):
            tmp_frame_path = os.path.join(tmp_folder, f"{idx}.png")
            pil_image.save(tmp_frame_path)
            tmp_frame_list.append(tmp_frame_path)
        
        # also save as mp4
        output_video_path = gif_path.replace(".gif", ".mp4")
        frames_to_video(tmp_folder, output_video_path, fps=7)

    # Creating GIFs for each image list
    timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    gif_paths = []

    for idx, image_list in enumerate([validation_control_images, flattened_batch_output]):

        gif_path = os.path.join(output_folder.replace("vis_gif.gif", ""), f"temp_{idx}_{timestamp}.gif")
        create_gif(image_list, gif_path)
        gif_paths.append(gif_path)

        # also save the point_tracks
        assert point_tracks is not None
        point_tracks_path = gif_path.replace(".gif", ".npy")
        np.save(point_tracks_path, point_tracks.cpu().numpy())

    # Function to combine GIFs side by side
    def combine_gifs_side_by_side(gif_paths, output_path):
        print(gif_paths)
        gifs = [Image.open(gif) for gif in gif_paths]

        # Assuming all gifs have the same frame count and duration
        frames = []
        for frame_idx in range(gifs[-1].n_frames):
            combined_frame = None
            for gif in gifs:
                if frame_idx >= gif.n_frames:
                    gif.seek(gif.n_frames - 1)
                else:
                    gif.seek(frame_idx)
                if combined_frame is None:
                    combined_frame = gif.copy()
                else:
                    combined_frame = get_concat_h(combined_frame, gif.copy(), gap=10)
            frames.append(combined_frame)

        if output_path.endswith(".mp4"):
            video = [torchvision.transforms.functional.pil_to_tensor(frame) for frame in frames]
            video = torch.stack(video)
            video = rearrange(video, 'T C H W -> T H W C')
            torchvision.io.write_video(output_path, video, fps=7)
            print(f"Saved video to {output_path}")
        else:
            frames[0].save(output_path, save_all=True, append_images=frames[1:], loop=0, duration=duration)
        
    # Helper function to concatenate images horizontally
    def get_concat_h(im1, im2, gap=10):
        # # img first, heatmap second
        # im1, im2 = im2, im1

        dst = Image.new('RGB', (im1.width + im2.width + gap, max(im1.height, im2.height)), (255, 255, 255))
        dst.paste(im1, (0, 0))
        dst.paste(im2, (im1.width + gap, 0))
        return dst

    # Helper function to concatenate images vertically
    def get_concat_v(im1, im2):
        dst = Image.new('RGB', (max(im1.width, im2.width), im1.height + im2.height))
        dst.paste(im1, (0, 0))
        dst.paste(im2, (0, im1.height))
        return dst

    # Combine the GIFs into a single file
    combined_gif_path = output_folder
    combine_gifs_side_by_side(gif_paths, combined_gif_path)

    combined_gif_path_v = gif_path.replace(".gif", "_v.mp4")
    ensure_dirname(combined_gif_path_v.replace(".mp4", ""))
    combine_gifs_side_by_side(gif_paths, combined_gif_path_v)

    # # Clean up temporary GIFs
    # for gif_path in gif_paths:
    #     os.remove(gif_path)

    return combined_gif_path


# Define functions
def validate_and_convert_image(image, target_size=(512 , 512)):
    if image is None:
        print("Encountered a None image")
        return None

    if isinstance(image, torch.Tensor):
        # Convert PyTorch tensor to PIL Image
        if image.ndim == 3 and image.shape[0] in [1, 3]:  # Check for CxHxW format
            if image.shape[0] == 1:  # Convert single-channel grayscale to RGB
                image = image.repeat(3, 1, 1)
            image = image.mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy()
            image = Image.fromarray(image)
        else:
            print(f"Invalid image tensor shape: {image.shape}")
            return None
    elif isinstance(image, Image.Image):
        # Resize PIL Image
        image = image.resize(target_size)
    else:
        print("Image is not a PIL Image or a PyTorch tensor")
        return None
    
    return image


class Drag:

    @spaces.GPU
    def __init__(self, device, args, height, width, model_length, dtype=torch.float16, use_sift=False):
        self.device = device
        self.dtype = dtype

        unet = UNetSpatioTemporalConditionModel.from_pretrained(
            os.path.join(args.model, "unet"),
            torch_dtype=torch.float16,
            low_cpu_mem_usage=True,
            custom_resume=True,
        )
        unet = unet.to(device, dtype)

        controlnet = ControlNetSVDModel.from_pretrained(
            os.path.join(args.model, "controlnet"),
        )
        controlnet = controlnet.to(device, dtype)

        if is_xformers_available():
            import xformers
            xformers_version = version.parse(xformers.__version__)
            unet.enable_xformers_memory_efficient_attention()
            # controlnet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError(
                "xformers is not available. Make sure it is installed correctly")

        pipe = StableVideoDiffusionInterpControlPipeline.from_pretrained(
            "checkpoints/stable-video-diffusion-img2vid-xt",
            unet=unet,
            controlnet=controlnet,
            low_cpu_mem_usage=False,
            torch_dtype=torch.float16, variant="fp16", local_files_only=True,
        )
        pipe.to(device)

        self.pipeline = pipe
        # self.pipeline.enable_model_cpu_offload()

        self.height = height
        self.width = width
        self.args = args
        self.model_length = model_length
        self.use_sift = use_sift

    @spaces.GPU
    def run(self, first_frame_path, last_frame_path, tracking_points, controlnet_cond_scale, motion_bucket_id):
        original_width, original_height = 512, 320  # TODO

        # load_image
        image = Image.open(first_frame_path).convert('RGB')
        width, height = image.size
        image = image.resize((self.width, self.height))

        image_end = Image.open(last_frame_path).convert('RGB')
        image_end = image_end.resize((self.width, self.height))

        input_all_points = tracking_points.constructor_args['value']

        sift_track_update = False
        anchor_points_flag = None

        if (len(input_all_points) == 0) and self.use_sift:
            sift_track_update = True
            controlnet_cond_scale = 0.5

            from models_diffusers.sift_match import sift_match
            from models_diffusers.sift_match import interpolate_trajectory as sift_interpolate_trajectory

            output_file_sift = os.path.join(args.output_dir,  "sift.png")

            # (f, topk, 2), f=2 (before interpolation)
            pred_tracks = sift_match(
                image,
                image_end,
                thr=0.5,
                topk=5,
                method="random",
                output_path=output_file_sift,
            )

            if pred_tracks is not None:
                # interpolate the tracks, following draganything gradio demo
                pred_tracks = sift_interpolate_trajectory(pred_tracks, num_frames=self.model_length)

                anchor_points_flag = torch.zeros((self.model_length, pred_tracks.shape[1])).to(pred_tracks.device)
                anchor_points_flag[0] = 1
                anchor_points_flag[-1] = 1

                pred_tracks = pred_tracks.permute(1, 0, 2)  # (num_points, num_frames, 2)

        else:

            resized_all_points = [
                tuple([
                    tuple([int(e1[0] * self.width / original_width), int(e1[1] * self.height / original_height)]) 
                    for e1 in e]) 
                for e in input_all_points
            ]

            # a list of num_tracks tuples, each tuple contains a track with several points, represented as (x, y)
            # in image w & h scale

            for idx, splited_track in enumerate(resized_all_points):
                if len(splited_track) == 0:
                    warnings.warn("running without point trajectory control")
                    continue

                if len(splited_track) == 1: # stationary point
                    displacement_point = tuple([splited_track[0][0] + 1, splited_track[0][1] + 1])
                    splited_track = tuple([splited_track[0], displacement_point])
                # interpolate the track
                splited_track = interpolate_trajectory(splited_track, self.model_length)
                splited_track = splited_track[:self.model_length]
                resized_all_points[idx] = splited_track

            pred_tracks = torch.tensor(resized_all_points)  # (num_points, num_frames, 2)

        vis_images = get_vis_image(
            target_size=(self.args.height, self.args.width),
            points=pred_tracks,
            num_frames=self.model_length,
        )

        if len(pred_tracks.shape) != 3:
            print("pred_tracks.shape", pred_tracks.shape)
            with_control = False
            controlnet_cond_scale = 0.0
        else:
            with_control = True
            pred_tracks = pred_tracks.permute(1, 0, 2).to(self.device, self.dtype)  # (num_frames, num_points, 2)

        point_embedding = None
        video_frames = self.pipeline(
            image,
            image_end,
            # trajectory control
            with_control=with_control,
            point_tracks=pred_tracks,
            point_embedding=point_embedding,
            with_id_feature=False,
            controlnet_cond_scale=controlnet_cond_scale,
            # others
            num_frames=14,
            width=width,
            height=height,
            # decode_chunk_size=8, 
            # generator=generator,
            motion_bucket_id=motion_bucket_id,
            fps=7,
            num_inference_steps=30,
            # track
            sift_track_update=sift_track_update,
            anchor_points_flag=anchor_points_flag,
        ).frames[0]

        vis_images = [cv2.applyColorMap(np.array(img).astype(np.uint8), cv2.COLORMAP_JET) for img in vis_images]
        vis_images = [cv2.cvtColor(np.array(img).astype(np.uint8), cv2.COLOR_BGR2RGB) for img in vis_images]
        vis_images = [Image.fromarray(img) for img in vis_images]
    
        # video_frames = [img for sublist in video_frames for img in sublist]
        val_save_dir = os.path.join(args.output_dir, "vis_gif.gif")
        save_gifs_side_by_side(
            video_frames, 
            vis_images[:self.model_length],
            val_save_dir,
            target_size=(self.width, self.height),
            duration=110,
            point_tracks=pred_tracks,
        )

        return val_save_dir


with gr.Blocks() as demo:
    gr.Markdown("""<h1 align="center">Framer: Interactive Frame Interpolation</h1><br>""")

    gr.Markdown("""Gradio Demo for <a href='https://arxiv.org/abs/2410.18978'><b>Framer: Interactive Frame Interpolation</b></a>.<br>
                Github Repo can be found at https://github.com/aim-uofa/Framer<br>
                The template is inspired by DragAnything.""")

    gr.Image(label="Framer: Interactive Frame Interpolation", value="assets/demos.gif", height=432, width=768)

    gr.Markdown("""## Usage: <br>
                1. Upload images<br>
                &ensp;  1.1  Upload the start image via the "Upload Start Image" button.<br>
                &ensp;  1.2. Upload the end image via the "Upload End Image" button.<br>
                2. (Optional) Draw some drags.<br>
                &ensp;  2.1. Click "Add Drag Trajectory" to add the motion trajectory.<br>
                &ensp;  2.2. You can click several points on either start or end image to forms a path.<br>
                &ensp;  2.3. Click "Delete last drag" to delete the whole lastest path.<br>
                &ensp;  2.4. Click "Delete last step" to delete the lastest clicked control point.<br>
                3. Interpolate the images (according the path) with a click on "Run" button. <br>""")
    
    # device, args, height, width, model_length
    Framer = Drag("cuda", args, 320, 512, 14)
    first_frame_path = gr.State()
    last_frame_path = gr.State()
    tracking_points = gr.State([])

    def reset_states(first_frame_path, last_frame_path, tracking_points):
        first_frame_path = gr.State()
        last_frame_path = gr.State()
        tracking_points = gr.State([])

        return first_frame_path, last_frame_path, tracking_points


    def preprocess_image(image):

        image_pil = image2pil(image.name)

        raw_w, raw_h = image_pil.size
        # resize_ratio = max(512 / raw_w, 320 / raw_h)
        # image_pil = image_pil.resize((int(raw_w * resize_ratio), int(raw_h * resize_ratio)), Image.BILINEAR)
        # image_pil = transforms.CenterCrop((320, 512))(image_pil.convert('RGB'))
        image_pil = image_pil.resize((512, 320), Image.BILINEAR)

        first_frame_path = os.path.join(args.output_dir, f"first_frame_{str(uuid.uuid4())[:4]}.png")
        
        image_pil.save(first_frame_path)

        return first_frame_path, first_frame_path, gr.State([])


    def preprocess_image_end(image_end):

        image_end_pil = image2pil(image_end.name)

        raw_w, raw_h = image_end_pil.size
        # resize_ratio = max(512 / raw_w, 320 / raw_h)
        # image_end_pil = image_end_pil.resize((int(raw_w * resize_ratio), int(raw_h * resize_ratio)), Image.BILINEAR)
        # image_end_pil = transforms.CenterCrop((320, 512))(image_end_pil.convert('RGB'))
        image_end_pil = image_end_pil.resize((512, 320), Image.BILINEAR)

        last_frame_path = os.path.join(args.output_dir, f"last_frame_{str(uuid.uuid4())[:4]}.png")

        image_end_pil.save(last_frame_path)

        return last_frame_path, last_frame_path, gr.State([])


    def add_drag(tracking_points):
        tracking_points.constructor_args['value'].append([])
        return tracking_points


    def delete_last_drag(tracking_points, first_frame_path, last_frame_path):
        tracking_points.constructor_args['value'].pop()
        transparent_background = Image.open(first_frame_path).convert('RGBA')
        transparent_background_end = Image.open(last_frame_path).convert('RGBA')
        w, h = transparent_background.size
        transparent_layer = np.zeros((h, w, 4))

        for track in tracking_points.constructor_args['value']:
            if len(track) > 1:
                for i in range(len(track)-1):
                    start_point = track[i]
                    end_point = track[i+1]
                    vx = end_point[0] - start_point[0]
                    vy = end_point[1] - start_point[1]
                    arrow_length = np.sqrt(vx**2 + vy**2)
                    if i == len(track)-2:
                        cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
                    else:
                        cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
            else:
                cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)

        transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
        trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
        trajectory_map_end = Image.alpha_composite(transparent_background_end, transparent_layer)

        return tracking_points, trajectory_map, trajectory_map_end


    def delete_last_step(tracking_points, first_frame_path, last_frame_path):
        tracking_points.constructor_args['value'][-1].pop()
        transparent_background = Image.open(first_frame_path).convert('RGBA')
        transparent_background_end = Image.open(last_frame_path).convert('RGBA')
        w, h = transparent_background.size
        transparent_layer = np.zeros((h, w, 4))

        for track in tracking_points.constructor_args['value']:
            if len(track) > 1:
                for i in range(len(track)-1):
                    start_point = track[i]
                    end_point = track[i+1]
                    vx = end_point[0] - start_point[0]
                    vy = end_point[1] - start_point[1]
                    arrow_length = np.sqrt(vx**2 + vy**2)
                    if i == len(track)-2:
                        cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
                    else:
                        cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
            else:
                cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)

        transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
        trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
        trajectory_map_end = Image.alpha_composite(transparent_background_end, transparent_layer)

        return tracking_points, trajectory_map, trajectory_map_end


    def add_tracking_points(tracking_points, first_frame_path, last_frame_path, evt: gr.SelectData):  # SelectData is a subclass of EventData
        print(f"You selected {evt.value} at {evt.index} from {evt.target}")
        tracking_points.constructor_args['value'][-1].append(evt.index)

        transparent_background = Image.open(first_frame_path).convert('RGBA')
        transparent_background_end = Image.open(last_frame_path).convert('RGBA')

        w, h = transparent_background.size
        transparent_layer = 0
        for idx, track in enumerate(tracking_points.constructor_args['value']):
            # mask = cv2.imread(
            #     os.path.join(args.output_dir, f"mask_{idx+1}.jpg")
            # )
            mask = np.zeros((320, 512, 3))
            color = color_list[idx+1]
            transparent_layer = mask[:, :, 0].reshape(h, w, 1) * color.reshape(1, 1, -1) + transparent_layer

            if len(track) > 1:
                for i in range(len(track)-1):
                    start_point = track[i]
                    end_point = track[i+1]
                    vx = end_point[0] - start_point[0]
                    vy = end_point[1] - start_point[1]
                    arrow_length = np.sqrt(vx**2 + vy**2)
                    if i == len(track)-2:
                        cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
                    else:
                        cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
            else:
                cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)

        transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
        alpha_coef = 0.99
        im2_data = transparent_layer.getdata()
        new_im2_data = [(r, g, b, int(a * alpha_coef)) for r, g, b, a in im2_data]
        transparent_layer.putdata(new_im2_data)

        trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
        trajectory_map_end = Image.alpha_composite(transparent_background_end, transparent_layer)

        return tracking_points, trajectory_map, trajectory_map_end

    with gr.Row():
        with gr.Column(scale=1):
            image_upload_button = gr.UploadButton(label="Upload Start Image", file_types=["image"])
            image_end_upload_button = gr.UploadButton(label="Upload End Image", file_types=["image"])
            # select_area_button = gr.Button(value="Select Area with SAM")
            add_drag_button = gr.Button(value="Add New Drag Trajectory")
            reset_button = gr.Button(value="Reset")
            run_button = gr.Button(value="Run")
            delete_last_drag_button = gr.Button(value="Delete last drag")
            delete_last_step_button = gr.Button(value="Delete last step")

        with gr.Column(scale=7):
            with gr.Row():
                with gr.Column(scale=6):
                    input_image = gr.Image(
                        label="start frame",
                        interactive=True,
                        height=320,
                        width=512,
                    )

                with gr.Column(scale=6):
                    input_image_end = gr.Image(
                        label="end frame",
                        interactive=True,
                        height=320,
                        width=512,
                    )

    with gr.Row():
        with gr.Column(scale=1):

            controlnet_cond_scale = gr.Slider(
                label='Control Scale', 
                minimum=0.0, 
                maximum=10, 
                step=0.1, 
                value=1.0,
            )

            motion_bucket_id = gr.Slider(
                label='Motion Bucket', 
                minimum=1, 
                maximum=180, 
                step=1, 
                value=100,
            )

        with gr.Column(scale=5):
            output_video = gr.Image(
                label="Output Video",
                height=320,
                width=1152,
            )


    with gr.Row():
        gr.Markdown("""
            ## Citation
            ```bibtex
            @article{wang2024framer,
              title={Framer: Interactive Frame Interpolation},
              author={Wang, Wen and Wang, Qiuyu and Zheng, Kecheng and Ouyang, Hao and Chen, Zhekai and Gong, Biao and Chen, Hao and Shen, Yujun and Shen, Chunhua},
              journal={arXiv preprint https://arxiv.org/abs/2410.18978},
              year={2024}
            }
            ```
            """)

    image_upload_button.upload(preprocess_image, image_upload_button, [input_image, first_frame_path, tracking_points])

    image_end_upload_button.upload(preprocess_image_end, image_end_upload_button, [input_image_end, last_frame_path, tracking_points])

    add_drag_button.click(add_drag, tracking_points, [tracking_points, ])

    delete_last_drag_button.click(delete_last_drag, [tracking_points, first_frame_path, last_frame_path], [tracking_points, input_image, input_image_end])

    delete_last_step_button.click(delete_last_step, [tracking_points, first_frame_path, last_frame_path], [tracking_points, input_image, input_image_end])

    reset_button.click(reset_states, [first_frame_path, last_frame_path, tracking_points], [first_frame_path, last_frame_path, tracking_points])

    input_image.select(add_tracking_points, [tracking_points, first_frame_path, last_frame_path], [tracking_points, input_image, input_image_end])

    input_image_end.select(add_tracking_points, [tracking_points, first_frame_path, last_frame_path], [tracking_points, input_image, input_image_end])

    run_button.click(Framer.run, [first_frame_path, last_frame_path, tracking_points, controlnet_cond_scale, motion_bucket_id], output_video)

    demo.queue().launch()