Spaces:
Runtime error
Runtime error
File size: 31,462 Bytes
b30835a 7615afe 7fd4aab 64a9e6c 7615afe 64a9e6c 7fd4aab 7615afe 78e77d5 7615afe 64a9e6c 7615afe 7fd4aab 7615afe 1e722d0 7615afe 2dc860d 7615afe 5b24944 7615afe 5b24944 7615afe 64a9e6c 7615afe 5b24944 7615afe 2dc860d 7615afe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 |
import spaces
import datetime
import uuid
from PIL import Image
import numpy as np
import cv2
from scipy.interpolate import interp1d, PchipInterpolator
from packaging import version
import torch
import torchvision
import gradio as gr
# from moviepy.editor import *
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils import load_image, export_to_video, export_to_gif
import os
import sys
sys.path.insert(0, os.getcwd())
from models_diffusers.controlnet_svd import ControlNetSVDModel
from models_diffusers.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
from pipelines.pipeline_stable_video_diffusion_interp_control import StableVideoDiffusionInterpControlPipeline
from gradio_demo.utils_drag import *
import warnings
print("gr file", gr.__file__)
from huggingface_hub import hf_hub_download, snapshot_download
os.makedirs("checkpoints", exist_ok=True)
snapshot_download(
"wwen1997/framer_512x320",
local_dir="checkpoints/framer_512x320",
token=os.environ["TOKEN"],
)
snapshot_download(
"stabilityai/stable-video-diffusion-img2vid-xt",
local_dir="checkpoints/stable-video-diffusion-img2vid-xt",
token=os.environ["TOKEN"],
)
def get_args():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--min_guidance_scale", type=float, default=1.0)
parser.add_argument("--max_guidance_scale", type=float, default=3.0)
parser.add_argument("--middle_max_guidance", type=int, default=0, choices=[0, 1])
parser.add_argument("--with_control", type=int, default=1, choices=[0, 1])
parser.add_argument("--controlnet_cond_scale", type=float, default=1.0)
parser.add_argument(
"--dataset",
type=str,
default='videoswap',
)
parser.add_argument(
"--model", type=str,
default="checkpoints/framer_512x320",
help="Path to model.",
)
parser.add_argument("--output_dir", type=str, default="gradio_demo/outputs", help="Path to the output video.")
parser.add_argument("--seed", type=int, default=42, help="random seed.")
parser.add_argument("--noise_aug", type=float, default=0.02)
parser.add_argument("--num_frames", type=int, default=14)
parser.add_argument("--frame_interval", type=int, default=2)
parser.add_argument("--width", type=int, default=512)
parser.add_argument("--height", type=int, default=320)
parser.add_argument(
"--num_workers",
type=int,
default=0,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
args = parser.parse_args()
return args
args = get_args()
ensure_dirname(args.output_dir)
color_list = []
for i in range(20):
color = np.concatenate([np.random.random(4)*255], axis=0)
color_list.append(color)
def interpolate_trajectory(points, n_points):
x = [point[0] for point in points]
y = [point[1] for point in points]
t = np.linspace(0, 1, len(points))
# fx = interp1d(t, x, kind='cubic')
# fy = interp1d(t, y, kind='cubic')
fx = PchipInterpolator(t, x)
fy = PchipInterpolator(t, y)
new_t = np.linspace(0, 1, n_points)
new_x = fx(new_t)
new_y = fy(new_t)
new_points = list(zip(new_x, new_y))
return new_points
def gen_gaussian_heatmap(imgSize=200):
circle_img = np.zeros((imgSize, imgSize), np.float32)
circle_mask = cv2.circle(circle_img, (imgSize//2, imgSize//2), imgSize//2, 1, -1)
isotropicGrayscaleImage = np.zeros((imgSize, imgSize), np.float32)
for i in range(imgSize):
for j in range(imgSize):
isotropicGrayscaleImage[i, j] = 1 / 2 / np.pi / (40 ** 2) * np.exp(
-1 / 2 * ((i - imgSize / 2) ** 2 / (40 ** 2) + (j - imgSize / 2) ** 2 / (40 ** 2)))
isotropicGrayscaleImage = isotropicGrayscaleImage * circle_mask
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)).astype(np.float32)
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)*255).astype(np.uint8)
return isotropicGrayscaleImage
def get_vis_image(
target_size=(512 , 512), points=None, side=20,
num_frames=14,
# original_size=(512 , 512), args="", first_frame=None, is_mask = False, model_id=None,
):
# images = []
vis_images = []
heatmap = gen_gaussian_heatmap()
trajectory_list = []
radius_list = []
for index, point in enumerate(points):
trajectories = [[int(i[0]), int(i[1])] for i in point]
trajectory_list.append(trajectories)
radius = 20
radius_list.append(radius)
if len(trajectory_list) == 0:
vis_images = [Image.fromarray(np.zeros(target_size, np.uint8)) for _ in range(num_frames)]
return vis_images
for idxx, point in enumerate(trajectory_list[0]):
new_img = np.zeros(target_size, np.uint8)
vis_img = new_img.copy()
# ids_embedding = torch.zeros((target_size[0], target_size[1], 320))
if idxx >= args.num_frames:
break
# for cc, (mask, trajectory, radius) in enumerate(zip(mask_list, trajectory_list, radius_list)):
for cc, (trajectory, radius) in enumerate(zip(trajectory_list, radius_list)):
center_coordinate = trajectory[idxx]
trajectory_ = trajectory[:idxx]
side = min(radius, 50)
y1 = max(center_coordinate[1] - side,0)
y2 = min(center_coordinate[1] + side, target_size[0] - 1)
x1 = max(center_coordinate[0] - side, 0)
x2 = min(center_coordinate[0] + side, target_size[1] - 1)
if x2-x1>3 and y2-y1>3:
need_map = cv2.resize(heatmap, (x2-x1, y2-y1))
new_img[y1:y2, x1:x2] = need_map.copy()
if cc >= 0:
vis_img[y1:y2,x1:x2] = need_map.copy()
if len(trajectory_) == 1:
vis_img[trajectory_[0][1], trajectory_[0][0]] = 255
else:
for itt in range(len(trajectory_)-1):
cv2.line(vis_img, (trajectory_[itt][0], trajectory_[itt][1]), (trajectory_[itt+1][0], trajectory_[itt+1][1]), (255, 255, 255), 3)
img = new_img
# Ensure all images are in RGB format
if len(img.shape) == 2: # Grayscale image
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
vis_img = cv2.cvtColor(vis_img, cv2.COLOR_GRAY2RGB)
elif len(img.shape) == 3 and img.shape[2] == 3: # Color image in BGR format
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
vis_img = cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB)
# Convert the numpy array to a PIL image
# pil_img = Image.fromarray(img)
# images.append(pil_img)
vis_images.append(Image.fromarray(vis_img))
return vis_images
def frames_to_video(frames_folder, output_video_path, fps=7):
frame_files = os.listdir(frames_folder)
# sort the frame files by their names
frame_files = sorted(frame_files, key=lambda x: int(x.split(".")[0]))
video = []
for frame_file in frame_files:
frame_path = os.path.join(frames_folder, frame_file)
frame = torchvision.io.read_image(frame_path)
video.append(frame)
video = torch.stack(video)
video = rearrange(video, 'T C H W -> T H W C')
torchvision.io.write_video(output_video_path, video, fps=fps)
def save_gifs_side_by_side(
batch_output,
validation_control_images,
output_folder,
target_size=(512 , 512),
duration=200,
point_tracks=None,
):
flattened_batch_output = batch_output
def create_gif(image_list, gif_path, duration=100):
pil_images = [validate_and_convert_image(img, target_size=target_size) for img in image_list]
pil_images = [img for img in pil_images if img is not None]
if pil_images:
pil_images[0].save(gif_path, save_all=True, append_images=pil_images[1:], loop=0, duration=duration)
# also save all the pil_images
tmp_folder = gif_path.replace(".gif", "")
print(tmp_folder)
ensure_dirname(tmp_folder)
tmp_frame_list = []
for idx, pil_image in enumerate(pil_images):
tmp_frame_path = os.path.join(tmp_folder, f"{idx}.png")
pil_image.save(tmp_frame_path)
tmp_frame_list.append(tmp_frame_path)
# also save as mp4
output_video_path = gif_path.replace(".gif", ".mp4")
frames_to_video(tmp_folder, output_video_path, fps=7)
# Creating GIFs for each image list
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
gif_paths = []
for idx, image_list in enumerate([validation_control_images, flattened_batch_output]):
gif_path = os.path.join(output_folder.replace("vis_gif.gif", ""), f"temp_{idx}_{timestamp}.gif")
create_gif(image_list, gif_path)
gif_paths.append(gif_path)
# also save the point_tracks
assert point_tracks is not None
point_tracks_path = gif_path.replace(".gif", ".npy")
np.save(point_tracks_path, point_tracks.cpu().numpy())
# Function to combine GIFs side by side
def combine_gifs_side_by_side(gif_paths, output_path):
print(gif_paths)
gifs = [Image.open(gif) for gif in gif_paths]
# Assuming all gifs have the same frame count and duration
frames = []
for frame_idx in range(gifs[-1].n_frames):
combined_frame = None
for gif in gifs:
if frame_idx >= gif.n_frames:
gif.seek(gif.n_frames - 1)
else:
gif.seek(frame_idx)
if combined_frame is None:
combined_frame = gif.copy()
else:
combined_frame = get_concat_h(combined_frame, gif.copy(), gap=10)
frames.append(combined_frame)
if output_path.endswith(".mp4"):
video = [torchvision.transforms.functional.pil_to_tensor(frame) for frame in frames]
video = torch.stack(video)
video = rearrange(video, 'T C H W -> T H W C')
torchvision.io.write_video(output_path, video, fps=7)
print(f"Saved video to {output_path}")
else:
frames[0].save(output_path, save_all=True, append_images=frames[1:], loop=0, duration=duration)
# Helper function to concatenate images horizontally
def get_concat_h(im1, im2, gap=10):
# # img first, heatmap second
# im1, im2 = im2, im1
dst = Image.new('RGB', (im1.width + im2.width + gap, max(im1.height, im2.height)), (255, 255, 255))
dst.paste(im1, (0, 0))
dst.paste(im2, (im1.width + gap, 0))
return dst
# Helper function to concatenate images vertically
def get_concat_v(im1, im2):
dst = Image.new('RGB', (max(im1.width, im2.width), im1.height + im2.height))
dst.paste(im1, (0, 0))
dst.paste(im2, (0, im1.height))
return dst
# Combine the GIFs into a single file
combined_gif_path = output_folder
combine_gifs_side_by_side(gif_paths, combined_gif_path)
combined_gif_path_v = gif_path.replace(".gif", "_v.mp4")
ensure_dirname(combined_gif_path_v.replace(".mp4", ""))
combine_gifs_side_by_side(gif_paths, combined_gif_path_v)
# # Clean up temporary GIFs
# for gif_path in gif_paths:
# os.remove(gif_path)
return combined_gif_path
# Define functions
def validate_and_convert_image(image, target_size=(512 , 512)):
if image is None:
print("Encountered a None image")
return None
if isinstance(image, torch.Tensor):
# Convert PyTorch tensor to PIL Image
if image.ndim == 3 and image.shape[0] in [1, 3]: # Check for CxHxW format
if image.shape[0] == 1: # Convert single-channel grayscale to RGB
image = image.repeat(3, 1, 1)
image = image.mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy()
image = Image.fromarray(image)
else:
print(f"Invalid image tensor shape: {image.shape}")
return None
elif isinstance(image, Image.Image):
# Resize PIL Image
image = image.resize(target_size)
else:
print("Image is not a PIL Image or a PyTorch tensor")
return None
return image
class Drag:
@spaces.GPU
def __init__(self, device, args, height, width, model_length, dtype=torch.float16, use_sift=False):
self.device = device
self.dtype = dtype
unet = UNetSpatioTemporalConditionModel.from_pretrained(
os.path.join(args.model, "unet"),
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
custom_resume=True,
)
unet = unet.to(device, dtype)
controlnet = ControlNetSVDModel.from_pretrained(
os.path.join(args.model, "controlnet"),
)
controlnet = controlnet.to(device, dtype)
if is_xformers_available():
import xformers
xformers_version = version.parse(xformers.__version__)
unet.enable_xformers_memory_efficient_attention()
# controlnet.enable_xformers_memory_efficient_attention()
else:
raise ValueError(
"xformers is not available. Make sure it is installed correctly")
pipe = StableVideoDiffusionInterpControlPipeline.from_pretrained(
"checkpoints/stable-video-diffusion-img2vid-xt",
unet=unet,
controlnet=controlnet,
low_cpu_mem_usage=False,
torch_dtype=torch.float16, variant="fp16", local_files_only=True,
)
pipe.to(device)
self.pipeline = pipe
# self.pipeline.enable_model_cpu_offload()
self.height = height
self.width = width
self.args = args
self.model_length = model_length
self.use_sift = use_sift
@spaces.GPU
def run(self, first_frame_path, last_frame_path, tracking_points, controlnet_cond_scale, motion_bucket_id):
original_width, original_height = 512, 320 # TODO
# load_image
image = Image.open(first_frame_path).convert('RGB')
width, height = image.size
image = image.resize((self.width, self.height))
image_end = Image.open(last_frame_path).convert('RGB')
image_end = image_end.resize((self.width, self.height))
input_all_points = tracking_points.constructor_args['value']
sift_track_update = False
anchor_points_flag = None
if (len(input_all_points) == 0) and self.use_sift:
sift_track_update = True
controlnet_cond_scale = 0.5
from models_diffusers.sift_match import sift_match
from models_diffusers.sift_match import interpolate_trajectory as sift_interpolate_trajectory
output_file_sift = os.path.join(args.output_dir, "sift.png")
# (f, topk, 2), f=2 (before interpolation)
pred_tracks = sift_match(
image,
image_end,
thr=0.5,
topk=5,
method="random",
output_path=output_file_sift,
)
if pred_tracks is not None:
# interpolate the tracks, following draganything gradio demo
pred_tracks = sift_interpolate_trajectory(pred_tracks, num_frames=self.model_length)
anchor_points_flag = torch.zeros((self.model_length, pred_tracks.shape[1])).to(pred_tracks.device)
anchor_points_flag[0] = 1
anchor_points_flag[-1] = 1
pred_tracks = pred_tracks.permute(1, 0, 2) # (num_points, num_frames, 2)
else:
resized_all_points = [
tuple([
tuple([int(e1[0] * self.width / original_width), int(e1[1] * self.height / original_height)])
for e1 in e])
for e in input_all_points
]
# a list of num_tracks tuples, each tuple contains a track with several points, represented as (x, y)
# in image w & h scale
for idx, splited_track in enumerate(resized_all_points):
if len(splited_track) == 0:
warnings.warn("running without point trajectory control")
continue
if len(splited_track) == 1: # stationary point
displacement_point = tuple([splited_track[0][0] + 1, splited_track[0][1] + 1])
splited_track = tuple([splited_track[0], displacement_point])
# interpolate the track
splited_track = interpolate_trajectory(splited_track, self.model_length)
splited_track = splited_track[:self.model_length]
resized_all_points[idx] = splited_track
pred_tracks = torch.tensor(resized_all_points) # (num_points, num_frames, 2)
vis_images = get_vis_image(
target_size=(self.args.height, self.args.width),
points=pred_tracks,
num_frames=self.model_length,
)
if len(pred_tracks.shape) != 3:
print("pred_tracks.shape", pred_tracks.shape)
with_control = False
controlnet_cond_scale = 0.0
else:
with_control = True
pred_tracks = pred_tracks.permute(1, 0, 2).to(self.device, self.dtype) # (num_frames, num_points, 2)
point_embedding = None
video_frames = self.pipeline(
image,
image_end,
# trajectory control
with_control=with_control,
point_tracks=pred_tracks,
point_embedding=point_embedding,
with_id_feature=False,
controlnet_cond_scale=controlnet_cond_scale,
# others
num_frames=14,
width=width,
height=height,
# decode_chunk_size=8,
# generator=generator,
motion_bucket_id=motion_bucket_id,
fps=7,
num_inference_steps=30,
# track
sift_track_update=sift_track_update,
anchor_points_flag=anchor_points_flag,
).frames[0]
vis_images = [cv2.applyColorMap(np.array(img).astype(np.uint8), cv2.COLORMAP_JET) for img in vis_images]
vis_images = [cv2.cvtColor(np.array(img).astype(np.uint8), cv2.COLOR_BGR2RGB) for img in vis_images]
vis_images = [Image.fromarray(img) for img in vis_images]
# video_frames = [img for sublist in video_frames for img in sublist]
val_save_dir = os.path.join(args.output_dir, "vis_gif.gif")
save_gifs_side_by_side(
video_frames,
vis_images[:self.model_length],
val_save_dir,
target_size=(self.width, self.height),
duration=110,
point_tracks=pred_tracks,
)
return val_save_dir
with gr.Blocks() as demo:
gr.Markdown("""<h1 align="center">Framer: Interactive Frame Interpolation</h1><br>""")
gr.Markdown("""Gradio Demo for <a href='https://arxiv.org/abs/2410.18978'><b>Framer: Interactive Frame Interpolation</b></a>.<br>
Github Repo can be found at https://github.com/aim-uofa/Framer<br>
The template is inspired by DragAnything.""")
gr.Image(label="Framer: Interactive Frame Interpolation", value="assets/demos.gif", height=432, width=768)
gr.Markdown("""## Usage: <br>
1. Upload images<br>
  1.1 Upload the start image via the "Upload Start Image" button.<br>
  1.2. Upload the end image via the "Upload End Image" button.<br>
2. (Optional) Draw some drags.<br>
  2.1. Click "Add Drag Trajectory" to add the motion trajectory.<br>
  2.2. You can click several points on either start or end image to forms a path.<br>
  2.3. Click "Delete last drag" to delete the whole lastest path.<br>
  2.4. Click "Delete last step" to delete the lastest clicked control point.<br>
3. Interpolate the images (according the path) with a click on "Run" button. <br>""")
# device, args, height, width, model_length
Framer = Drag("cuda", args, 320, 512, 14)
first_frame_path = gr.State()
last_frame_path = gr.State()
tracking_points = gr.State([])
def reset_states(first_frame_path, last_frame_path, tracking_points):
first_frame_path = gr.State()
last_frame_path = gr.State()
tracking_points = gr.State([])
return first_frame_path, last_frame_path, tracking_points
def preprocess_image(image):
image_pil = image2pil(image.name)
raw_w, raw_h = image_pil.size
# resize_ratio = max(512 / raw_w, 320 / raw_h)
# image_pil = image_pil.resize((int(raw_w * resize_ratio), int(raw_h * resize_ratio)), Image.BILINEAR)
# image_pil = transforms.CenterCrop((320, 512))(image_pil.convert('RGB'))
image_pil = image_pil.resize((512, 320), Image.BILINEAR)
first_frame_path = os.path.join(args.output_dir, f"first_frame_{str(uuid.uuid4())[:4]}.png")
image_pil.save(first_frame_path)
return first_frame_path, first_frame_path, gr.State([])
def preprocess_image_end(image_end):
image_end_pil = image2pil(image_end.name)
raw_w, raw_h = image_end_pil.size
# resize_ratio = max(512 / raw_w, 320 / raw_h)
# image_end_pil = image_end_pil.resize((int(raw_w * resize_ratio), int(raw_h * resize_ratio)), Image.BILINEAR)
# image_end_pil = transforms.CenterCrop((320, 512))(image_end_pil.convert('RGB'))
image_end_pil = image_end_pil.resize((512, 320), Image.BILINEAR)
last_frame_path = os.path.join(args.output_dir, f"last_frame_{str(uuid.uuid4())[:4]}.png")
image_end_pil.save(last_frame_path)
return last_frame_path, last_frame_path, gr.State([])
def add_drag(tracking_points):
tracking_points.constructor_args['value'].append([])
return tracking_points
def delete_last_drag(tracking_points, first_frame_path, last_frame_path):
tracking_points.constructor_args['value'].pop()
transparent_background = Image.open(first_frame_path).convert('RGBA')
transparent_background_end = Image.open(last_frame_path).convert('RGBA')
w, h = transparent_background.size
transparent_layer = np.zeros((h, w, 4))
for track in tracking_points.constructor_args['value']:
if len(track) > 1:
for i in range(len(track)-1):
start_point = track[i]
end_point = track[i+1]
vx = end_point[0] - start_point[0]
vy = end_point[1] - start_point[1]
arrow_length = np.sqrt(vx**2 + vy**2)
if i == len(track)-2:
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
else:
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
else:
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
trajectory_map_end = Image.alpha_composite(transparent_background_end, transparent_layer)
return tracking_points, trajectory_map, trajectory_map_end
def delete_last_step(tracking_points, first_frame_path, last_frame_path):
tracking_points.constructor_args['value'][-1].pop()
transparent_background = Image.open(first_frame_path).convert('RGBA')
transparent_background_end = Image.open(last_frame_path).convert('RGBA')
w, h = transparent_background.size
transparent_layer = np.zeros((h, w, 4))
for track in tracking_points.constructor_args['value']:
if len(track) > 1:
for i in range(len(track)-1):
start_point = track[i]
end_point = track[i+1]
vx = end_point[0] - start_point[0]
vy = end_point[1] - start_point[1]
arrow_length = np.sqrt(vx**2 + vy**2)
if i == len(track)-2:
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
else:
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
else:
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
trajectory_map_end = Image.alpha_composite(transparent_background_end, transparent_layer)
return tracking_points, trajectory_map, trajectory_map_end
def add_tracking_points(tracking_points, first_frame_path, last_frame_path, evt: gr.SelectData): # SelectData is a subclass of EventData
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
tracking_points.constructor_args['value'][-1].append(evt.index)
transparent_background = Image.open(first_frame_path).convert('RGBA')
transparent_background_end = Image.open(last_frame_path).convert('RGBA')
w, h = transparent_background.size
transparent_layer = 0
for idx, track in enumerate(tracking_points.constructor_args['value']):
# mask = cv2.imread(
# os.path.join(args.output_dir, f"mask_{idx+1}.jpg")
# )
mask = np.zeros((320, 512, 3))
color = color_list[idx+1]
transparent_layer = mask[:, :, 0].reshape(h, w, 1) * color.reshape(1, 1, -1) + transparent_layer
if len(track) > 1:
for i in range(len(track)-1):
start_point = track[i]
end_point = track[i+1]
vx = end_point[0] - start_point[0]
vy = end_point[1] - start_point[1]
arrow_length = np.sqrt(vx**2 + vy**2)
if i == len(track)-2:
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
else:
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
else:
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
alpha_coef = 0.99
im2_data = transparent_layer.getdata()
new_im2_data = [(r, g, b, int(a * alpha_coef)) for r, g, b, a in im2_data]
transparent_layer.putdata(new_im2_data)
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
trajectory_map_end = Image.alpha_composite(transparent_background_end, transparent_layer)
return tracking_points, trajectory_map, trajectory_map_end
with gr.Row():
with gr.Column(scale=1):
image_upload_button = gr.UploadButton(label="Upload Start Image", file_types=["image"])
image_end_upload_button = gr.UploadButton(label="Upload End Image", file_types=["image"])
# select_area_button = gr.Button(value="Select Area with SAM")
add_drag_button = gr.Button(value="Add New Drag Trajectory")
reset_button = gr.Button(value="Reset")
run_button = gr.Button(value="Run")
delete_last_drag_button = gr.Button(value="Delete last drag")
delete_last_step_button = gr.Button(value="Delete last step")
with gr.Column(scale=7):
with gr.Row():
with gr.Column(scale=6):
input_image = gr.Image(
label="start frame",
interactive=True,
height=320,
width=512,
)
with gr.Column(scale=6):
input_image_end = gr.Image(
label="end frame",
interactive=True,
height=320,
width=512,
)
with gr.Row():
with gr.Column(scale=1):
controlnet_cond_scale = gr.Slider(
label='Control Scale',
minimum=0.0,
maximum=10,
step=0.1,
value=1.0,
)
motion_bucket_id = gr.Slider(
label='Motion Bucket',
minimum=1,
maximum=180,
step=1,
value=100,
)
with gr.Column(scale=5):
output_video = gr.Image(
label="Output Video",
height=320,
width=1152,
)
with gr.Row():
gr.Markdown("""
## Citation
```bibtex
@article{wang2024framer,
title={Framer: Interactive Frame Interpolation},
author={Wang, Wen and Wang, Qiuyu and Zheng, Kecheng and Ouyang, Hao and Chen, Zhekai and Gong, Biao and Chen, Hao and Shen, Yujun and Shen, Chunhua},
journal={arXiv preprint https://arxiv.org/abs/2410.18978},
year={2024}
}
```
""")
image_upload_button.upload(preprocess_image, image_upload_button, [input_image, first_frame_path, tracking_points])
image_end_upload_button.upload(preprocess_image_end, image_end_upload_button, [input_image_end, last_frame_path, tracking_points])
add_drag_button.click(add_drag, tracking_points, [tracking_points, ])
delete_last_drag_button.click(delete_last_drag, [tracking_points, first_frame_path, last_frame_path], [tracking_points, input_image, input_image_end])
delete_last_step_button.click(delete_last_step, [tracking_points, first_frame_path, last_frame_path], [tracking_points, input_image, input_image_end])
reset_button.click(reset_states, [first_frame_path, last_frame_path, tracking_points], [first_frame_path, last_frame_path, tracking_points])
input_image.select(add_tracking_points, [tracking_points, first_frame_path, last_frame_path], [tracking_points, input_image, input_image_end])
input_image_end.select(add_tracking_points, [tracking_points, first_frame_path, last_frame_path], [tracking_points, input_image, input_image_end])
run_button.click(Framer.run, [first_frame_path, last_frame_path, tracking_points, controlnet_cond_scale, motion_bucket_id], output_video)
demo.queue().launch()
|