Spaces:
Sleeping
Sleeping
marta-marta
commited on
Commit
·
e0d1700
1
Parent(s):
4661dbe
Added to incorporate a function to export the STL files directly from the user generated inputs
Browse files
app.py
CHANGED
@@ -5,6 +5,9 @@ import matplotlib.pyplot as plt
|
|
5 |
from huggingface_hub import from_pretrained_keras
|
6 |
import streamlit as st
|
7 |
from elasticity import elasticity
|
|
|
|
|
|
|
8 |
|
9 |
# Needed in requirements.txt for importing to use in the transformers model
|
10 |
import tensorflow
|
@@ -344,19 +347,128 @@ for column in range(latent_dimensionality):
|
|
344 |
new_column = np.linspace(latent_point_1[column], latent_point_2[column], num_interp)
|
345 |
latent_matrix.append(new_column)
|
346 |
latent_matrix = np.array(latent_matrix).T # Transposes the matrix so that each row can be easily indexed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
########################################################################################################################
|
348 |
# Plotting the Interpolation in 2D Using Chosen Points
|
349 |
-
if st.
|
|
|
350 |
linear_interp_latent = np.linspace(latent_point_1, latent_point_2, num_interp)
|
351 |
-
|
352 |
linear_predicted_interps = []
|
353 |
figure_2 = np.zeros((28, 28 * num_interp))
|
|
|
|
|
354 |
for i in range(num_interp):
|
355 |
generated_image = decoder_model_boxes.predict(np.array([linear_interp_latent[i]]))[0]
|
356 |
figure_2[0:28, i * 28:(i + 1) * 28, ] = generated_image[:, :, -1]
|
357 |
linear_predicted_interps.append(generated_image[:, :, -1])
|
358 |
|
359 |
st.image(figure_2, width=600)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
360 |
########################################################################################################################
|
361 |
# Provide User Options
|
362 |
st.header("Option 2: Perform a Mesh Interpolation")
|
@@ -404,7 +516,7 @@ latent_point_4 = encoder_model_boxes.predict(number_4_expand)[0]
|
|
404 |
latent_dimensionality = len(latent_point_1) # define the dimensionality of the latent space
|
405 |
########################################################################################################################
|
406 |
# Plot a Mesh Gridded Interpolation
|
407 |
-
if st.
|
408 |
latent_matrix_2 = [] # This will contain the latent points of the interpolation
|
409 |
for column in range(latent_dimensionality):
|
410 |
new_column = np.linspace(latent_point_3[column], latent_point_4[column], num_interp)
|
@@ -429,3 +541,44 @@ if st.button("Generate Mesh Interpolation"):
|
|
429 |
mesh_predicted_interps.append(generated_image[:, :, -1])
|
430 |
|
431 |
st.image(figure_3, width=600)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from huggingface_hub import from_pretrained_keras
|
6 |
import streamlit as st
|
7 |
from elasticity import elasticity
|
8 |
+
import io
|
9 |
+
from voxel_to_SDF_to_STL import voxel_to_sdf, sdf_to_stl, single_body_check
|
10 |
+
from PIL import Image
|
11 |
|
12 |
# Needed in requirements.txt for importing to use in the transformers model
|
13 |
import tensorflow
|
|
|
347 |
new_column = np.linspace(latent_point_1[column], latent_point_2[column], num_interp)
|
348 |
latent_matrix.append(new_column)
|
349 |
latent_matrix = np.array(latent_matrix).T # Transposes the matrix so that each row can be easily indexed
|
350 |
+
|
351 |
+
|
352 |
+
########################################################################################################################
|
353 |
+
# Create a gif from an interpolation
|
354 |
+
def interpolate_gif(decoder, latent_endpoint_1, latent_endpoint_2, n=100):
|
355 |
+
# z = np.stack([latent_endpoint_1 + (latent_endpoint_2 - latent_endpoint_1) * t for t in np.linspace(0, 1, n)])
|
356 |
+
|
357 |
+
# interpolate_list = decoder.predict(z)
|
358 |
+
# interpolate_list = (interpolate_list * 255).astype(np.uint8)
|
359 |
+
|
360 |
+
# images_list = [Image.fromarray(img.reshape(28, 28)).resize((256, 256)) for img in interpolate_list]
|
361 |
+
# images_list = images_list + images_list[::-1] # loop back beginning
|
362 |
+
predicted_interps = []
|
363 |
+
interp_latent = np.linspace(latent_endpoint_1, latent_endpoint_2, n)
|
364 |
+
|
365 |
+
figure = np.zeros((28, 28 * n))
|
366 |
+
for i in range(n):
|
367 |
+
generated_image = decoder.predict(np.array([interp_latent[i]]))[0]
|
368 |
+
figure[0:28, i * 28:(i + 1) * 28, ] = generated_image[:, :, -1]
|
369 |
+
predicted_interps.append(generated_image[:, :, -1])
|
370 |
+
|
371 |
+
|
372 |
+
# Regular Save for GIF
|
373 |
+
# images_list[0].save(f'{filename}.gif',save_all=True,append_images=images_list[1:],loop=1)
|
374 |
+
|
375 |
+
images_list = [Image.fromarray(img.reshape(28, 28)).resize((256, 256)) for img in predicted_interps]
|
376 |
+
images_list = images_list + images_list[::-1] # loop back beginning
|
377 |
+
|
378 |
+
# Create a BytesIO object to hold the GIF data
|
379 |
+
gif_bytes = io.BytesIO()
|
380 |
+
images_list[0].save(
|
381 |
+
gif_bytes,
|
382 |
+
format='GIF',
|
383 |
+
save_all=True,
|
384 |
+
append_images=images_list[1:],
|
385 |
+
loop=0, duration=100) # Set loop to 0 for infinite looping
|
386 |
+
|
387 |
+
# Reset the BytesIO object to the beginning
|
388 |
+
gif_bytes.seek(0)
|
389 |
+
|
390 |
+
st.video(gif_bytes)
|
391 |
+
# return gif_bytes
|
392 |
+
|
393 |
+
|
394 |
+
########################################################################################################################
|
395 |
+
# Create an STL file from an interpolation
|
396 |
+
def convert_to_2_5d_sdf(interpolation, voxel_threshold, pixel_thickness):
|
397 |
+
# Thresholding determines the distance from the SDF that is used, the threshold provided is a divisor
|
398 |
+
|
399 |
+
# 1. Convert the interpolation into a 3D structure
|
400 |
+
interpolation_3d = [interpolation] * pixel_thickness
|
401 |
+
|
402 |
+
# 2. Convert the voxels into an SDF
|
403 |
+
sdf = voxel_to_sdf(interpolation_3d, voxel_threshold)
|
404 |
+
return sdf
|
405 |
+
|
406 |
+
def convert_sdf_to_stl(sdf, threshold_divisor):
|
407 |
+
# 3. Check if the SDF is a single body, then convert into an STL
|
408 |
+
if single_body_check(sdf, threshold_divisor):
|
409 |
+
# Thresholding determines the distance from the SDF that is used, the thresdhold provided is a divisor
|
410 |
+
stl = sdf_to_stl(sdf, threshold_divisor)
|
411 |
+
return stl
|
412 |
+
|
413 |
+
|
414 |
########################################################################################################################
|
415 |
# Plotting the Interpolation in 2D Using Chosen Points
|
416 |
+
if st.checkbox("Generate Linear Interpolation"):
|
417 |
+
# Generate the set of latent points in the interpolation
|
418 |
linear_interp_latent = np.linspace(latent_point_1, latent_point_2, num_interp)
|
|
|
419 |
linear_predicted_interps = []
|
420 |
figure_2 = np.zeros((28, 28 * num_interp))
|
421 |
+
|
422 |
+
# Predict the image for each latent point
|
423 |
for i in range(num_interp):
|
424 |
generated_image = decoder_model_boxes.predict(np.array([linear_interp_latent[i]]))[0]
|
425 |
figure_2[0:28, i * 28:(i + 1) * 28, ] = generated_image[:, :, -1]
|
426 |
linear_predicted_interps.append(generated_image[:, :, -1])
|
427 |
|
428 |
st.image(figure_2, width=600)
|
429 |
+
|
430 |
+
# Code to display a gif
|
431 |
+
# interpolate_gif(decoder_model_boxes, latent_point_1, latent_point_2)
|
432 |
+
|
433 |
+
# Code for generating the STL file
|
434 |
+
st.subheader("Create an STL file from the extruded image!")
|
435 |
+
|
436 |
+
if st.checkbox("Select to begin model generation"):
|
437 |
+
# Creating an STL file of the linear interpolation
|
438 |
+
|
439 |
+
pixel_thickness_input = st.number_input("(1) Select a pixel thickness for the 3D model: ", min_value=1, value=28)
|
440 |
+
# Set the image threshold for binarization
|
441 |
+
voxel_threshold_input = st.slider("(2) Select a value to threshold the image (Recommend <= 0.1) "
|
442 |
+
"Higher values will result in less defined shapes: ",
|
443 |
+
min_value=0.0001, max_value=0.999, value=0.1, key='voxel_threshold')
|
444 |
+
|
445 |
+
# Create the SDF File
|
446 |
+
linear_sdf = convert_to_2_5d_sdf(figure_2, voxel_threshold_input, pixel_thickness_input)
|
447 |
+
|
448 |
+
# Set the threshold for the Mesh
|
449 |
+
threshold_divisor_input = st.slider("(3) Choose a threshold divisor for the SDF: ", min_value=0.0,
|
450 |
+
max_value=5.0,
|
451 |
+
value=3.0, key="divisor_threshold")
|
452 |
+
|
453 |
+
linear_sdf_min = np.min(linear_sdf)
|
454 |
+
linear_sdf_max = np.max(linear_sdf)
|
455 |
+
st.info("Lower SDF Thresholds will result in smoother, but less accurate shapes. Higher thresholds will result in more "
|
456 |
+
"rugged shapes, but they are more accurate. Suggested value for threshold is less than: " +
|
457 |
+
str((linear_sdf_max - abs(linear_sdf_min)) / 2))
|
458 |
+
|
459 |
+
if st.checkbox("Generate STL Model"):
|
460 |
+
# Generate the STL File
|
461 |
+
linear_stl = convert_sdf_to_stl(linear_sdf, threshold_divisor=threshold_divisor_input)
|
462 |
+
|
463 |
+
# Download the STL File
|
464 |
+
with open(linear_stl, 'rb') as file:
|
465 |
+
st.download_button(
|
466 |
+
label='Download STL',
|
467 |
+
data=file,
|
468 |
+
file_name='linear_interpolation.stl',
|
469 |
+
key='stl-download'
|
470 |
+
)
|
471 |
+
|
472 |
########################################################################################################################
|
473 |
# Provide User Options
|
474 |
st.header("Option 2: Perform a Mesh Interpolation")
|
|
|
516 |
latent_dimensionality = len(latent_point_1) # define the dimensionality of the latent space
|
517 |
########################################################################################################################
|
518 |
# Plot a Mesh Gridded Interpolation
|
519 |
+
if st.checkbox("Generate Mesh Interpolation"):
|
520 |
latent_matrix_2 = [] # This will contain the latent points of the interpolation
|
521 |
for column in range(latent_dimensionality):
|
522 |
new_column = np.linspace(latent_point_3[column], latent_point_4[column], num_interp)
|
|
|
541 |
mesh_predicted_interps.append(generated_image[:, :, -1])
|
542 |
|
543 |
st.image(figure_3, width=600)
|
544 |
+
|
545 |
+
# Code for generating the STL file
|
546 |
+
st.subheader("Create an STL file from the extruded image!")
|
547 |
+
|
548 |
+
if st.checkbox("Select to begin model generation"):
|
549 |
+
# Creating an STL file of the linear interpolation
|
550 |
+
|
551 |
+
mesh_pixel_thickness_input = st.number_input("(1) Select a pixel thickness for the 3D model: ", min_value=1,
|
552 |
+
value=28)
|
553 |
+
# Set the image threshold for binarization
|
554 |
+
mesh_voxel_threshold_input = st.slider("(2) Select a value to threshold the image (Recommend <= 0.1) "
|
555 |
+
"Higher values will result in less defined shapes: ",
|
556 |
+
min_value=0.0001, max_value=0.999, value=0.1, key='voxel_threshold')
|
557 |
+
|
558 |
+
# Create the SDF File
|
559 |
+
mesh_sdf = convert_to_2_5d_sdf(figure_3, mesh_voxel_threshold_input, mesh_pixel_thickness_input)
|
560 |
+
|
561 |
+
# Set the threshold for the Mesh
|
562 |
+
mesh_threshold_divisor_input = st.slider("(3) Choose a threshold divisor for the SDF: ", min_value=0.0,
|
563 |
+
max_value=5.0,
|
564 |
+
value=3.0, key="divisor_threshold")
|
565 |
+
|
566 |
+
mesh_sdf_min = np.min(mesh_sdf)
|
567 |
+
mesh_sdf_max = np.max(mesh_sdf)
|
568 |
+
st.info(
|
569 |
+
"Lower SDF Thresholds will result in smoother, but less accurate shapes. Higher thresholds will result in more "
|
570 |
+
"rugged shapes, but they are more accurate. Suggested value for threshold is less than: " +
|
571 |
+
str((mesh_sdf_max - abs(mesh_sdf_min)) / 2))
|
572 |
+
|
573 |
+
if st.checkbox("Generate STL Model"):
|
574 |
+
# Generate the STL File
|
575 |
+
linear_stl = convert_sdf_to_stl(mesh_sdf, threshold_divisor=mesh_threshold_divisor_input)
|
576 |
+
|
577 |
+
# Download the STL File
|
578 |
+
with open(linear_stl, 'rb') as file:
|
579 |
+
st.download_button(
|
580 |
+
label='Download STL',
|
581 |
+
data=file,
|
582 |
+
file_name='interpolation.stl',
|
583 |
+
key='stl-download'
|
584 |
+
)
|