Chris Finlayson
commited on
Commit
·
ee9fa1c
1
Parent(s):
b5dd388
initial commit
Browse files- .ipynb_checkpoints/NLP-checkpoint.ipynb +236 -0
- NLP.ipynb +0 -0
- app.py +172 -0
- graph.png +0 -0
- requirements.txt +4 -0
.ipynb_checkpoints/NLP-checkpoint.ipynb
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "c49abf54-35c7-4b82-aa31-a155633c3327",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": []
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": null,
|
14 |
+
"id": "43644952-bca3-4060-af76-3d5a8357be06",
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"import re\n",
|
19 |
+
"import pandas as pd\n",
|
20 |
+
"import bs4\n",
|
21 |
+
"import requests\n",
|
22 |
+
"import spacy\n",
|
23 |
+
"from spacy import displacy\n",
|
24 |
+
"nlp = spacy.load('en_core_web_sm')\n",
|
25 |
+
"\n",
|
26 |
+
"from spacy.matcher import Matcher \n",
|
27 |
+
"from spacy.tokens import Span \n",
|
28 |
+
"\n",
|
29 |
+
"import networkx as nx\n",
|
30 |
+
"\n",
|
31 |
+
"import matplotlib.pyplot as plt\n",
|
32 |
+
"from tqdm import tqdm\n",
|
33 |
+
"\n",
|
34 |
+
"pd.set_option('display.max_colwidth', 200)\n",
|
35 |
+
"%matplotlib inline"
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"execution_count": null,
|
41 |
+
"id": "1b73f085-2b8b-4f48-b26c-2da5fb22c9f2",
|
42 |
+
"metadata": {},
|
43 |
+
"outputs": [],
|
44 |
+
"source": [
|
45 |
+
"# import wikipedia sentences\n",
|
46 |
+
"candidate_sentences = pd.read_csv(\"../input/wiki-sentences1/wiki_sentences_v2.csv\")\n",
|
47 |
+
"candidate_sentences.shape"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"cell_type": "code",
|
52 |
+
"execution_count": null,
|
53 |
+
"id": "1bd9de52-e1bc-46a6-9f52-e90969ed9f0c",
|
54 |
+
"metadata": {},
|
55 |
+
"outputs": [],
|
56 |
+
"source": [
|
57 |
+
"def get_entities(sent):\n",
|
58 |
+
" ## chunk 1\n",
|
59 |
+
" ent1 = \"\"\n",
|
60 |
+
" ent2 = \"\"\n",
|
61 |
+
"\n",
|
62 |
+
" prv_tok_dep = \"\" # dependency tag of previous token in the sentence\n",
|
63 |
+
" prv_tok_text = \"\" # previous token in the sentence\n",
|
64 |
+
"\n",
|
65 |
+
" prefix = \"\"\n",
|
66 |
+
" modifier = \"\"\n",
|
67 |
+
"\n",
|
68 |
+
" #############################################################\n",
|
69 |
+
" \n",
|
70 |
+
" for tok in nlp(sent):\n",
|
71 |
+
" ## chunk 2\n",
|
72 |
+
" # if token is a punctuation mark then move on to the next token\n",
|
73 |
+
" if tok.dep_ != \"punct\":\n",
|
74 |
+
" # check: token is a compound word or not\n",
|
75 |
+
" if tok.dep_ == \"compound\":\n",
|
76 |
+
" prefix = tok.text\n",
|
77 |
+
" # if the previous word was also a 'compound' then add the current word to it\n",
|
78 |
+
" if prv_tok_dep == \"compound\":\n",
|
79 |
+
" prefix = prv_tok_text + \" \"+ tok.text\n",
|
80 |
+
" \n",
|
81 |
+
" # check: token is a modifier or not\n",
|
82 |
+
" if tok.dep_.endswith(\"mod\") == True:\n",
|
83 |
+
" modifier = tok.text\n",
|
84 |
+
" # if the previous word was also a 'compound' then add the current word to it\n",
|
85 |
+
" if prv_tok_dep == \"compound\":\n",
|
86 |
+
" modifier = prv_tok_text + \" \"+ tok.text\n",
|
87 |
+
" \n",
|
88 |
+
" ## chunk 3\n",
|
89 |
+
" if tok.dep_.find(\"subj\") == True:\n",
|
90 |
+
" ent1 = modifier +\" \"+ prefix + \" \"+ tok.text\n",
|
91 |
+
" prefix = \"\"\n",
|
92 |
+
" modifier = \"\"\n",
|
93 |
+
" prv_tok_dep = \"\"\n",
|
94 |
+
" prv_tok_text = \"\" \n",
|
95 |
+
"\n",
|
96 |
+
" ## chunk 4\n",
|
97 |
+
" if tok.dep_.find(\"obj\") == True:\n",
|
98 |
+
" ent2 = modifier +\" \"+ prefix +\" \"+ tok.text\n",
|
99 |
+
" \n",
|
100 |
+
" ## chunk 5 \n",
|
101 |
+
" # update variables\n",
|
102 |
+
" prv_tok_dep = tok.dep_\n",
|
103 |
+
" prv_tok_text = tok.text\n",
|
104 |
+
" #############################################################\n",
|
105 |
+
"\n",
|
106 |
+
" return [ent1.strip(), ent2.strip()]"
|
107 |
+
]
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"cell_type": "code",
|
111 |
+
"execution_count": null,
|
112 |
+
"id": "11bec388-fdb8-4823-9049-aa4cf328eba6",
|
113 |
+
"metadata": {},
|
114 |
+
"outputs": [],
|
115 |
+
"source": [
|
116 |
+
"entity_pairs = []\n",
|
117 |
+
"\n",
|
118 |
+
"for i in tqdm(candidate_sentences[\"sentence\"]):\n",
|
119 |
+
" entity_pairs.append(get_entities(i))"
|
120 |
+
]
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"cell_type": "code",
|
124 |
+
"execution_count": null,
|
125 |
+
"id": "02f56072-ae65-4b15-a3b6-674701040568",
|
126 |
+
"metadata": {},
|
127 |
+
"outputs": [],
|
128 |
+
"source": [
|
129 |
+
"def get_relation(sent):\n",
|
130 |
+
"\n",
|
131 |
+
" doc = nlp(sent)\n",
|
132 |
+
"\n",
|
133 |
+
" # Matcher class object \n",
|
134 |
+
" matcher = Matcher(nlp.vocab)\n",
|
135 |
+
"\n",
|
136 |
+
" #define the pattern \n",
|
137 |
+
" pattern = [{'DEP':'ROOT'}, \n",
|
138 |
+
" {'DEP':'prep','OP':\"?\"},\n",
|
139 |
+
" {'DEP':'agent','OP':\"?\"}, \n",
|
140 |
+
" {'POS':'ADJ','OP':\"?\"}] \n",
|
141 |
+
"\n",
|
142 |
+
" matcher.add(\"matching_1\", None, pattern) \n",
|
143 |
+
"\n",
|
144 |
+
" matches = matcher(doc)\n",
|
145 |
+
" k = len(matches) - 1\n",
|
146 |
+
"\n",
|
147 |
+
" span = doc[matches[k][1]:matches[k][2]] \n",
|
148 |
+
"\n",
|
149 |
+
" return(span.text)"
|
150 |
+
]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"cell_type": "code",
|
154 |
+
"execution_count": null,
|
155 |
+
"id": "ee3a774f-9f2d-4a4c-a77a-04bc420d4864",
|
156 |
+
"metadata": {},
|
157 |
+
"outputs": [],
|
158 |
+
"source": [
|
159 |
+
"relations = [get_relation(i) for i in tqdm(candidate_sentences['sentence'])]"
|
160 |
+
]
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"cell_type": "code",
|
164 |
+
"execution_count": null,
|
165 |
+
"id": "c04581bb-46b5-48ce-bbe1-b465a789ad82",
|
166 |
+
"metadata": {},
|
167 |
+
"outputs": [],
|
168 |
+
"source": [
|
169 |
+
"# extract subject\n",
|
170 |
+
"source = [i[0] for i in entity_pairs]\n",
|
171 |
+
"\n",
|
172 |
+
"# extract object\n",
|
173 |
+
"target = [i[1] for i in entity_pairs]\n",
|
174 |
+
"\n",
|
175 |
+
"kg_df = pd.DataFrame({'source':source, 'target':target, 'edge':relations})"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "code",
|
180 |
+
"execution_count": null,
|
181 |
+
"id": "b0fec1f2-d370-4d79-8a92-2ebdff2be420",
|
182 |
+
"metadata": {},
|
183 |
+
"outputs": [],
|
184 |
+
"source": [
|
185 |
+
"# create a directed-graph from a dataframe\n",
|
186 |
+
"G=nx.from_pandas_edgelist(kg_df, \"source\", \"target\", \n",
|
187 |
+
" edge_attr=True, create_using=nx.MultiDiGraph())"
|
188 |
+
]
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"cell_type": "code",
|
192 |
+
"execution_count": null,
|
193 |
+
"id": "39b80dbe-f991-4e12-b0a1-4026344af82f",
|
194 |
+
"metadata": {},
|
195 |
+
"outputs": [],
|
196 |
+
"source": [
|
197 |
+
"plt.figure(figsize=(12,12))\n",
|
198 |
+
"\n",
|
199 |
+
"pos = nx.spring_layout(G)\n",
|
200 |
+
"nx.draw(G, with_labels=True, node_color='skyblue', edge_cmap=plt.cm.Blues, pos = pos)\n",
|
201 |
+
"plt.show()"
|
202 |
+
]
|
203 |
+
},
|
204 |
+
{
|
205 |
+
"cell_type": "code",
|
206 |
+
"execution_count": null,
|
207 |
+
"id": "be07f563-0b61-441f-bb24-a9e884eef1b8",
|
208 |
+
"metadata": {},
|
209 |
+
"outputs": [],
|
210 |
+
"source": [
|
211 |
+
"#https://www.kaggle.com/code/pavansanagapati/knowledge-graph-nlp-tutorial-bert-spacy-nltk"
|
212 |
+
]
|
213 |
+
}
|
214 |
+
],
|
215 |
+
"metadata": {
|
216 |
+
"kernelspec": {
|
217 |
+
"display_name": "Python 3 (ipykernel)",
|
218 |
+
"language": "python",
|
219 |
+
"name": "python3"
|
220 |
+
},
|
221 |
+
"language_info": {
|
222 |
+
"codemirror_mode": {
|
223 |
+
"name": "ipython",
|
224 |
+
"version": 3
|
225 |
+
},
|
226 |
+
"file_extension": ".py",
|
227 |
+
"mimetype": "text/x-python",
|
228 |
+
"name": "python",
|
229 |
+
"nbconvert_exporter": "python",
|
230 |
+
"pygments_lexer": "ipython3",
|
231 |
+
"version": "3.11.5"
|
232 |
+
}
|
233 |
+
},
|
234 |
+
"nbformat": 4,
|
235 |
+
"nbformat_minor": 5
|
236 |
+
}
|
NLP.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import fitz
|
4 |
+
import re
|
5 |
+
import spacy
|
6 |
+
import spacy.cli
|
7 |
+
import re
|
8 |
+
import pandas as pd
|
9 |
+
import bs4
|
10 |
+
import requests
|
11 |
+
import spacy
|
12 |
+
from spacy import displacy
|
13 |
+
nlp = spacy.load('en_core_web_sm')
|
14 |
+
from spacy.matcher import Matcher
|
15 |
+
from spacy.tokens import Span
|
16 |
+
import networkx as nx
|
17 |
+
import matplotlib.pyplot as plt
|
18 |
+
from tqdm import tqdm
|
19 |
+
|
20 |
+
try:
|
21 |
+
nlp = spacy.load('en_core_web_sm')
|
22 |
+
except OSError:
|
23 |
+
print("Model not found. Downloading...")
|
24 |
+
spacy.cli.download("en_core_web_sm")
|
25 |
+
nlp = spacy.load('en_core_web_sm')
|
26 |
+
|
27 |
+
|
28 |
+
# def read_pdf(file):
|
29 |
+
# doc = fitz.open(file)
|
30 |
+
# text = ""
|
31 |
+
# for page in doc:
|
32 |
+
# text += page.get_text("text").split('\n')
|
33 |
+
# return text
|
34 |
+
|
35 |
+
def read_csv(file):
|
36 |
+
candidate_sentences = pd.read_csv("/Users/christopherfinlayson/wiki_sentences_v2.csv")
|
37 |
+
return candidate_sentences.shape
|
38 |
+
|
39 |
+
def get_entities(sent):
|
40 |
+
## chunk 1
|
41 |
+
ent1 = ""
|
42 |
+
ent2 = ""
|
43 |
+
|
44 |
+
prv_tok_dep = "" # dependency tag of previous token in the sentence
|
45 |
+
prv_tok_text = "" # previous token in the sentence
|
46 |
+
|
47 |
+
prefix = ""
|
48 |
+
modifier = ""
|
49 |
+
|
50 |
+
#############################################################
|
51 |
+
|
52 |
+
for tok in nlp(sent):
|
53 |
+
## chunk 2
|
54 |
+
# if token is a punctuation mark then move on to the next token
|
55 |
+
if tok.dep_ != "punct":
|
56 |
+
# check: token is a compound word or not
|
57 |
+
if tok.dep_ == "compound":
|
58 |
+
prefix = tok.text
|
59 |
+
# if the previous word was also a 'compound' then add the current word to it
|
60 |
+
if prv_tok_dep == "compound":
|
61 |
+
prefix = prv_tok_text + " "+ tok.text
|
62 |
+
|
63 |
+
# check: token is a modifier or not
|
64 |
+
if tok.dep_.endswith("mod") == True:
|
65 |
+
modifier = tok.text
|
66 |
+
# if the previous word was also a 'compound' then add the current word to it
|
67 |
+
if prv_tok_dep == "compound":
|
68 |
+
modifier = prv_tok_text + " "+ tok.text
|
69 |
+
|
70 |
+
## chunk 3
|
71 |
+
if tok.dep_.find("subj") == True:
|
72 |
+
ent1 = modifier +" "+ prefix + " "+ tok.text
|
73 |
+
prefix = ""
|
74 |
+
modifier = ""
|
75 |
+
prv_tok_dep = ""
|
76 |
+
prv_tok_text = ""
|
77 |
+
|
78 |
+
## chunk 4
|
79 |
+
if tok.dep_.find("obj") == True:
|
80 |
+
ent2 = modifier +" "+ prefix +" "+ tok.text
|
81 |
+
|
82 |
+
## chunk 5
|
83 |
+
# update variables
|
84 |
+
prv_tok_dep = tok.dep_
|
85 |
+
prv_tok_text = tok.text
|
86 |
+
#############################################################
|
87 |
+
|
88 |
+
return [ent1.strip(), ent2.strip()]
|
89 |
+
|
90 |
+
def get_relation(sent):
|
91 |
+
|
92 |
+
doc = nlp(sent)
|
93 |
+
|
94 |
+
# Matcher class object
|
95 |
+
matcher = Matcher(nlp.vocab)
|
96 |
+
|
97 |
+
#define the pattern
|
98 |
+
pattern = [{'DEP':'ROOT'},
|
99 |
+
{'DEP':'prep','OP':"?"},
|
100 |
+
{'DEP':'agent','OP':"?"},
|
101 |
+
{'POS':'ADJ','OP':"?"}]
|
102 |
+
|
103 |
+
matcher.add("matching_1", [pattern])
|
104 |
+
|
105 |
+
matches = matcher(doc)
|
106 |
+
k = len(matches) - 1
|
107 |
+
|
108 |
+
span = doc[matches[k][1]:matches[k][2]]
|
109 |
+
|
110 |
+
return(span.text)
|
111 |
+
|
112 |
+
def ulify(elements):
|
113 |
+
string = "<ul>\n"
|
114 |
+
string += "\n".join(["<li>" + str(s) + "</li>" for s in elements])
|
115 |
+
string += "\n</ul>"
|
116 |
+
return string
|
117 |
+
|
118 |
+
def execute_process(file, edge):
|
119 |
+
# candidate_sentences = pd.DataFrame(read_pdf(file), columns=['Sentences'])
|
120 |
+
candidate_sentences = pd.read_csv(file)
|
121 |
+
|
122 |
+
entity_pairs = []
|
123 |
+
for i in tqdm(candidate_sentences["sentence"]):
|
124 |
+
entity_pairs.append(get_entities(i))
|
125 |
+
relations = [get_relation(i) for i in tqdm(candidate_sentences['sentence'])]
|
126 |
+
# extract subject
|
127 |
+
source = [i[0] for i in entity_pairs]
|
128 |
+
|
129 |
+
# extract object
|
130 |
+
target = [i[1] for i in entity_pairs]
|
131 |
+
kg_df = pd.DataFrame({'source':source, 'target':target, 'edge':relations})
|
132 |
+
|
133 |
+
# create a variable of all unique edges
|
134 |
+
unique_edges = kg_df['edge'].unique() if kg_df['edge'].nunique() != 0 else None
|
135 |
+
# create a dataframe of all unique edges and their counts
|
136 |
+
edge_counts = kg_df['edge'].value_counts()
|
137 |
+
unique_edges_df = pd.DataFrame({'edge': edge_counts.index, 'count': edge_counts.values})
|
138 |
+
|
139 |
+
G=nx.from_pandas_edgelist(kg_df, "source", "target",
|
140 |
+
edge_attr=True, create_using=nx.MultiDiGraph())
|
141 |
+
|
142 |
+
if edge is not None:
|
143 |
+
G=nx.from_pandas_edgelist(kg_df[kg_df['edge']==edge], "source", "target",
|
144 |
+
edge_attr=True, create_using=nx.MultiDiGraph())
|
145 |
+
plt.figure(figsize=(12,12))
|
146 |
+
pos = nx.spring_layout(G)
|
147 |
+
nx.draw(G, with_labels=True, node_color='skyblue', edge_cmap=plt.cm.Blues, pos = pos)
|
148 |
+
plt.savefig("graph.png")
|
149 |
+
# return "graph.png", "\n".join(unique_edges)
|
150 |
+
return "graph.png", unique_edges_df
|
151 |
+
|
152 |
+
else:
|
153 |
+
plt.figure(figsize=(12,12))
|
154 |
+
pos = nx.spring_layout(G, k = 0.5) # k regulates the distance between nodes
|
155 |
+
nx.draw(G, with_labels=True, node_color='skyblue', node_size=1500, edge_cmap=plt.cm.Blues, pos = pos)
|
156 |
+
plt.savefig("graph.png")
|
157 |
+
# return "graph.png", "\n".join(unique_edges)
|
158 |
+
return "graph.png", unique_edges_df
|
159 |
+
|
160 |
+
inputs = [
|
161 |
+
gr.File(label="Upload PDF"),
|
162 |
+
gr.Textbox(label="Graph a particular edge", type="text")
|
163 |
+
]
|
164 |
+
|
165 |
+
outputs = [
|
166 |
+
gr.Image(label="Generated graph"),
|
167 |
+
gr.Dataframe(label="Unique edges", type="pandas")
|
168 |
+
]
|
169 |
+
|
170 |
+
description = 'This app reads all text from a PDF document, and allows the user to generate a knowledge which illustrates concepts and relationships within'
|
171 |
+
iface = gr.Interface(fn=execute_process, inputs=inputs, outputs=outputs, title="PDF Knowledge graph", description=description)
|
172 |
+
iface.launch()
|
graph.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
PyMuPDF
|
3 |
+
transformers
|
4 |
+
plotly
|