File size: 12,476 Bytes
3d3e4e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

# Modified from https://github.com/lucidrains/denoising-diffusion-pytorch/blob/beb2f2d8dd9b4f2bd5be4719f37082fe061ee450/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py

import math
import copy
from pathlib import Path
from random import random
from functools import partial
from collections import namedtuple
from multiprocessing import cpu_count

import torch
from torch import nn, einsum
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader

from torch.optim import Adam
from torchvision import transforms as T, utils

from einops import rearrange, reduce
from einops.layers.torch import Rearrange

from PIL import Image
from tqdm.auto import tqdm
from typing import Any, Dict, List, Optional, Tuple, Union

# constants

ModelPrediction = namedtuple("ModelPrediction", ["pred_noise", "pred_x_start"])

# helpers functions


def exists(x):
    return x is not None


def default(val, d):
    if exists(val):
        return val
    return d() if callable(d) else d


def extract(a, t, x_shape):
    b, *_ = t.shape
    out = a.gather(-1, t)
    return out.reshape(b, *((1,) * (len(x_shape) - 1)))


def linear_beta_schedule(timesteps):
    scale = 1000 / timesteps
    beta_start = scale * 0.0001
    beta_end = scale * 0.02
    return torch.linspace(beta_start, beta_end, timesteps, dtype=torch.float64)


def cosine_beta_schedule(timesteps, s=0.008):
    """
    cosine schedule
    as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
    """
    steps = timesteps + 1
    x = torch.linspace(0, timesteps, steps, dtype=torch.float64)
    alphas_cumprod = (
        torch.cos(((x / timesteps) + s) / (1 + s) * math.pi * 0.5) ** 2
    )
    alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
    betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
    return torch.clip(betas, 0, 0.999)


class GaussianDiffusion(nn.Module):
    def __init__(
        self,
        timesteps=100,
        sampling_timesteps=None,
        beta_1=0.0001,
        beta_T=0.1,
        loss_type="l1",
        objective="pred_noise",
        beta_schedule="custom",
        p2_loss_weight_gamma=0.0,
        p2_loss_weight_k=1,
    ):
        super().__init__()

        self.objective = objective

        assert objective in {
            "pred_noise",
            "pred_x0",
        }, "objective must be either pred_noise (predict noise) \
            or pred_x0 (predict image start)"

        self.timesteps = timesteps
        self.sampling_timesteps = sampling_timesteps
        self.beta_1 = beta_1
        self.beta_T = beta_T
        self.loss_type = loss_type
        self.objective = objective
        self.beta_schedule = beta_schedule
        self.p2_loss_weight_gamma = p2_loss_weight_gamma
        self.p2_loss_weight_k = p2_loss_weight_k

        self.init_diff_hyper(
            self.timesteps,
            self.sampling_timesteps,
            self.beta_1,
            self.beta_T,
            self.loss_type,
            self.objective,
            self.beta_schedule,
            self.p2_loss_weight_gamma,
            self.p2_loss_weight_k,
        )

    def init_diff_hyper(
        self,
        timesteps,
        sampling_timesteps,
        beta_1,
        beta_T,
        loss_type,
        objective,
        beta_schedule,
        p2_loss_weight_gamma,
        p2_loss_weight_k,
    ):
        if beta_schedule == "linear":
            betas = linear_beta_schedule(timesteps)
        elif beta_schedule == "cosine":
            betas = cosine_beta_schedule(timesteps)
        elif beta_schedule == "custom":
            betas = torch.linspace(
                beta_1, beta_T, timesteps, dtype=torch.float64
            )
        else:
            raise ValueError(f"unknown beta schedule {beta_schedule}")

        alphas = 1.0 - betas
        alphas_cumprod = torch.cumprod(alphas, axis=0)
        alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value=1.0)

        (timesteps,) = betas.shape
        self.num_timesteps = int(timesteps)
        self.loss_type = loss_type

        # sampling related parameters
        self.sampling_timesteps = default(
            sampling_timesteps, timesteps
        )  # default num sampling timesteps to number of timesteps at training

        assert self.sampling_timesteps <= timesteps

        # helper function to register buffer from float64 to float32
        register_buffer = lambda name, val: self.register_buffer(
            name, val.to(torch.float32)
        )

        register_buffer("betas", betas)
        register_buffer("alphas_cumprod", alphas_cumprod)
        register_buffer("alphas_cumprod_prev", alphas_cumprod_prev)

        # calculations for diffusion q(x_t | x_{t-1}) and others
        register_buffer("sqrt_alphas_cumprod", torch.sqrt(alphas_cumprod))
        register_buffer(
            "sqrt_one_minus_alphas_cumprod", torch.sqrt(1.0 - alphas_cumprod)
        )
        register_buffer(
            "log_one_minus_alphas_cumprod", torch.log(1.0 - alphas_cumprod)
        )
        register_buffer(
            "sqrt_recip_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod)
        )
        register_buffer(
            "sqrt_recipm1_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod - 1)
        )

        # calculations for posterior q(x_{t-1} | x_t, x_0)
        posterior_variance = (
            betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)
        )

        # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
        register_buffer("posterior_variance", posterior_variance)

        # below: log calculation clipped because the posterior variance is 0
        # at the beginning of the diffusion chain
        register_buffer(
            "posterior_log_variance_clipped",
            torch.log(posterior_variance.clamp(min=1e-20)),
        )
        register_buffer(
            "posterior_mean_coef1",
            betas * torch.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod),
        )
        register_buffer(
            "posterior_mean_coef2",
            (1.0 - alphas_cumprod_prev)
            * torch.sqrt(alphas)
            / (1.0 - alphas_cumprod),
        )

        # calculate p2 reweighting
        register_buffer(
            "p2_loss_weight",
            (p2_loss_weight_k + alphas_cumprod / (1 - alphas_cumprod))
            ** -p2_loss_weight_gamma,
        )

    # helper functions
    def predict_start_from_noise(self, x_t, t, noise):
        return (
            extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
            - extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
        )

    def predict_noise_from_start(self, x_t, t, x0):
        return (
            extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - x0
        ) / extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)

    def q_posterior(self, x_start, x_t, t):
        posterior_mean = (
            extract(self.posterior_mean_coef1, t, x_t.shape) * x_start
            + extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
        )

        posterior_variance = extract(self.posterior_variance, t, x_t.shape)
        posterior_log_variance_clipped = extract(
            self.posterior_log_variance_clipped, t, x_t.shape
        )
        return (
            posterior_mean,
            posterior_variance,
            posterior_log_variance_clipped,
        )

    def q_sample(self, x_start, t, noise=None):
        noise = default(noise, lambda: torch.randn_like(x_start))
        return (
            extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
            + extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
            * noise
        )

    def model_predictions(self, x, t, z, x_self_cond=None):
        model_output = self.model(x, t, z)

        if self.objective == "pred_noise":
            pred_noise = model_output
            x_start = self.predict_start_from_noise(x, t, model_output)

        elif self.objective == "pred_x0":
            pred_noise = self.predict_noise_from_start(x, t, model_output)
            x_start = model_output

        return ModelPrediction(pred_noise, x_start)

    def p_mean_variance(
        self,
        x: torch.Tensor,  # B x N_x x dim
        t: int,
        z: torch.Tensor,
        x_self_cond=None,
        clip_denoised=False,
    ):
        preds = self.model_predictions(x, t, z)

        x_start = preds.pred_x_start

        if clip_denoised:
            raise NotImplementedError(
                "We don't clip the output because \
                    pose does not have a clear bound."
            )

        (
            model_mean,
            posterior_variance,
            posterior_log_variance,
        ) = self.q_posterior(x_start=x_start, x_t=x, t=t)

        return model_mean, posterior_variance, posterior_log_variance, x_start

    @torch.no_grad()
    def p_sample(
        self,
        x: torch.Tensor,  # B x N_x x dim
        t: int,
        z: torch.Tensor,
        x_self_cond=None,
        clip_denoised=False,
        cond_fn=None,
        cond_start_step=0,
    ):
        b, *_, device = *x.shape, x.device
        batched_times = torch.full(
            (x.shape[0],), t, device=x.device, dtype=torch.long
        )
        model_mean, _, model_log_variance, x_start = self.p_mean_variance(
            x=x,
            t=batched_times,
            z=z,
            x_self_cond=x_self_cond,
            clip_denoised=clip_denoised,
        )

        if cond_fn is not None and t < cond_start_step:
            model_mean = cond_fn(model_mean, t)
            noise = 0.0
        else:
            noise = torch.randn_like(x) if t > 0 else 0.0  # no noise if t == 0

        pred = model_mean + (0.5 * model_log_variance).exp() * noise
        return pred, x_start

    @torch.no_grad()
    def p_sample_loop(
        self,
        shape,
        z: torch.Tensor,
        cond_fn=None,
        cond_start_step=0,
    ):
        batch, device = shape[0], self.betas.device

        # Init here
        pose = torch.randn(shape, device=device)

        x_start = None

        pose_process = []
        pose_process.append(pose.unsqueeze(0))

        for t in reversed(range(0, self.num_timesteps)):
            pose, _ = self.p_sample(
                x=pose,
                t=t,
                z=z,
                cond_fn=cond_fn,
                cond_start_step=cond_start_step,
            )
            pose_process.append(pose.unsqueeze(0))

        return pose, torch.cat(pose_process)

    @torch.no_grad()
    def sample(self, shape, z, cond_fn=None, cond_start_step=0):
        # TODO: add more variants
        sample_fn = self.p_sample_loop
        return sample_fn(
            shape, z=z, cond_fn=cond_fn, cond_start_step=cond_start_step
        )

    def p_losses(
        self,
        x_start,
        t,
        z=None,
        noise=None,
    ):
        noise = default(noise, lambda: torch.randn_like(x_start))
        # noise sample
        x = self.q_sample(x_start=x_start, t=t, noise=noise)

        model_out = self.model(x, t, z)

        if self.objective == "pred_noise":
            target = noise
            x_0_pred = self.predict_start_from_noise(x, t, model_out)
        elif self.objective == "pred_x0":
            target = x_start
            x_0_pred = model_out
        else:
            raise ValueError(f"unknown objective {self.objective}")

        loss = self.loss_fn(model_out, target, reduction="none")

        loss = reduce(loss, "b ... -> b (...)", "mean")
        loss = loss * extract(self.p2_loss_weight, t, loss.shape)

        return {
            "loss": loss,
            "noise": noise,
            "x_0_pred": x_0_pred,
            "x_t": x,
            "t": t,
        }

    def forward(self, pose, z=None, *args, **kwargs):
        b = len(pose)
        t = torch.randint(
            0, self.num_timesteps, (b,), device=pose.device
        ).long()
        return self.p_losses(pose, t, z=z, *args, **kwargs)

    @property
    def loss_fn(self):
        if self.loss_type == "l1":
            return F.l1_loss
        elif self.loss_type == "l2":
            return F.mse_loss
        else:
            raise ValueError(f"invalid loss type {self.loss_type}")