File size: 6,625 Bytes
0f8ae1b 440cea1 0f8ae1b 440cea1 0f8ae1b 440cea1 0f8ae1b 440cea1 0f8ae1b 440cea1 0f8ae1b 440cea1 0f8ae1b 440cea1 0f8ae1b 440cea1 0f8ae1b 440cea1 0f8ae1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# !pip install -q langchain\n",
"# !pip install -q openai"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"notebookRunGroups": {
"groupValue": ""
}
},
"outputs": [],
"source": [
"from keys import openapi_key\n",
"import os\n",
"\n",
"os.environ['OPENAI_API_KEY'] = openapi_key\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\"Imperial Dragon Palace\"\n"
]
}
],
"source": [
"from langchain.llms import OpenAI\n",
"llm = OpenAI(temperature=0.6)\n",
"name = llm(\"I want to open a restaurant for Chinese food. Suggest a fancy name for this.\")\n",
"print(name)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'I want to open a restaurant for Mexican food. Suggest a fancy name for this.'"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.prompts import PromptTemplate\n",
"\n",
"prompt_template_name = PromptTemplate(\n",
" input_variables = [\"cuisine\"],\n",
" template=\"I want to open a restaurant for {cuisine} food. Suggest a fancy name for this.\",\n",
")\n",
"\n",
"prompt_template_name.format(cuisine=\"Mexican\")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\n\\n\"La Cantina de Oro\"'"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.chains import LLMChain\n",
"\n",
"name_chain = LLMChain(llm=llm, prompt=prompt_template_name)\n",
"name_chain.run(cuisine=\"Mexican\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Sequential Chains"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"prompt_template_items = PromptTemplate(\n",
" input_variables = [\"restaurant_name\"],\n",
" template=\"Suggest some menu items for {restaurant_name}. Return it as a comma separated list.\",\n",
")\n",
"food_items_chain = LLMChain(llm=llm, prompt=prompt_template_items)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"1. Spicy Chicken Curry\n",
"2. Lamb Vindaloo\n",
"3. Vegetable Samosas\n",
"4. Tandoori Shrimp\n",
"5. Naan Bread\n",
"6. Chicken Tikka Masala\n",
"7. Aloo Gobi (Potato and Cauliflower Curry)\n",
"8. Palak Paneer (Spinach and Cheese Curry)\n",
"9. Mango Lassi\n",
"10. Biryani Rice\n",
"11. Chana Masala (Chickpea Curry)\n",
"12. Chicken Korma\n",
"13. Garlic Naan\n",
"14. Masala Dosa (Stuffed Crepe)\n",
"15. Gulab Jamun (Sweet Fried Dumplings)\n"
]
}
],
"source": [
"from langchain.chains import SimpleSequentialChain\n",
"\n",
"chain = SimpleSequentialChain(chains=[name_chain, food_items_chain])\n",
"response = chain.run(\"Indian\")\n",
"print(response)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Sequential Chain"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0.7)\n",
"\n",
"prompt_template_name = PromptTemplate(\n",
" input_variables=[\"cuisine\"],\n",
" template = \"I want to open a restaurant for {cuisine} food. Suggest a fancy name for this.\",\n",
")\n",
"\n",
"name_chain = LLMChain(llm=llm, prompt=prompt_template_name, output_key=\"restaurant_name\")\n",
"\n",
"prompt_template_items = PromptTemplate(\n",
" input_variables=[\"restaurant_name\"],\n",
" template = \"Suggest some menu items for {restaurant_name}.\",\n",
")\n",
"\n",
"food_items_chain = LLMChain(llm=llm, prompt=prompt_template_items, output_key=\"menu_items\")\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'cuisine': 'Singaporean',\n",
" 'restaurant_name': '\\n\\n\"Singapore Spice House\"',\n",
" 'menu_items': '\\n\\n1. Singaporean Chili Crab\\n2. Hainanese Chicken Rice\\n3. Laksa Soup\\n4. Char Kway Teow (Stir-fried noodles with shrimp, egg, and sausage)\\n5. Satay Skewers (grilled marinated meat on skewers)\\n6. Nasi Lemak (coconut rice dish with fried chicken, fried anchovies, peanuts, and sambal chili sauce)\\n7. Roti Prata (Indian-style flatbread served with curry)\\n8. Bak Kut Teh (pork rib soup with herbs and spices)\\n9. Murtabak (stuffed pancake with chicken or mutton)\\n10. Singaporean-style Fried Rice\\n11. Beef Rendang (spicy braised beef in coconut milk)\\n12. Chilli Prawns\\n13. Gado Gado (Indonesian salad with peanut sauce)\\n14. Sambal Stingray (grilled stingray with spicy sambal sauce)\\n15. Biryani Rice (fragrant rice dish with spices and choice of meat)'}"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.chains import SequentialChain\n",
"\n",
"chain = SequentialChain(\n",
" chains=[name_chain, food_items_chain], \n",
" input_variables=[\"cuisine\"], \n",
" output_variables = [\"restaurant_name\", \"menu_items\"]\n",
")\n",
"\n",
"chain({\"cuisine\": \"Singaporean\"})"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "codebasics-langchain-crash-course",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|