Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,063 Bytes
ded79ae 596d336 ded79ae d65c3c0 59812f5 d65c3c0 596d336 ded79ae d65c3c0 c86c2f3 d65c3c0 c86c2f3 d65c3c0 d2d3f64 c86c2f3 596d336 d65c3c0 596d336 ded79ae 596d336 d65c3c0 596d336 ded79ae 596d336 d65c3c0 d38ce92 4522cd0 59812f5 4522cd0 141ba59 436a11f 4522cd0 436a11f 4522cd0 436a11f 4522cd0 e6dd388 3992910 e6dd388 596d336 d65c3c0 ded79ae 596d336 ded79ae 9ecc669 ded79ae 0c5ff1b ded79ae d65c3c0 c86c2f3 09b3f75 c86c2f3 1827259 141ba59 ded79ae d65c3c0 c86c2f3 d2d3f64 4522cd0 d65c3c0 141ba59 d65c3c0 c86c2f3 d65c3c0 c86c2f3 1827259 e18ba1b 141ba59 596d336 d65c3c0 e6dd388 d65c3c0 89f9579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
import base64
import hashlib
import io
import json
import os
import tempfile
from collections import OrderedDict as CollectionsOrderedDict
from pathlib import Path
from threading import Thread
from typing import Iterator, Optional, List, Union, OrderedDict
import fitz
import gradio as gr
import requests
import spaces
import torch
from PIL import Image
from colpali_engine import ColPali, ColPaliProcessor
from huggingface_hub import hf_hub_download
from pydantic import BaseModel
from qwen_vl_utils import process_vision_info
from swift.llm import (
ModelType,
get_model_tokenizer,
get_default_template_type,
get_template,
inference,
inference_stream,
)
from tqdm import tqdm
from transformers import (
Qwen2VLForConditionalGeneration,
PreTrainedTokenizer,
Qwen2VLProcessor,
TextIteratorStreamer,
AutoTokenizer,
)
from ultralytics import YOLO
from ultralytics.engine.results import Results
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# M-Longdoc: A Benchmark For Multimodal Super-Long Document Understanding And A Retrieval-Aware Tuning Framework
This Space demonstrates the multimodal long document understanding model with 7B parameters fine-tuned for texts, tables, and figures. Feel free to play with it, or duplicate to run generations without a queue!
🔎 For more details about the project, check out the [paper](https://arxiv.org/pdf/2411.06176).
"""
LICENSE = """
<p/>
---
As a derivate work of [Llama-3-8b-chat](https://huggingface.co/meta-llama/Meta-Llama-3-8B) by Meta,
this demo is governed by the original [license](https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE) and [acceptable use policy](https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/USE_POLICY.md).
"""
class MultimodalSample(BaseModel):
question: str
answer: str
category: str
evidence_pages: List[int] = []
raw_output: str = ""
pred: str = ""
source: str = ""
annotator: str = ""
generator: str = ""
retrieved_pages: List[int] = []
class MultimodalObject(BaseModel):
id: str = ""
page: int = 0
text: str = ""
image_string: str = ""
snippet: str = ""
score: float = 0.0
source: str = ""
category: str = ""
def get_image(self) -> Optional[Image.Image]:
if self.image_string:
return convert_text_to_image(self.image_string)
@classmethod
def from_image(cls, image: Image.Image, **kwargs):
return cls(image_string=convert_image_to_text(image), **kwargs)
class ObjectDetector(BaseModel, arbitrary_types_allowed=True):
def run(self, image: Image.Image) -> List[MultimodalObject]:
raise NotImplementedError()
class YoloDetector(ObjectDetector):
repo_id: str = "DILHTWD/documentlayoutsegmentation_YOLOv8_ondoclaynet"
filename: str = "yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt"
local_dir: str = "data/yolo"
client: Optional[YOLO] = None
def load(self):
if self.client is None:
if not Path(self.local_dir, self.filename).exists():
hf_hub_download(
repo_id=self.repo_id,
filename=self.filename,
local_dir=self.local_dir,
)
self.client = YOLO(Path(self.local_dir, self.filename))
def save_image(self, image: Image.Image) -> str:
text = convert_image_to_text(image)
hash_id = hashlib.md5(text.encode()).hexdigest()
path = Path(self.local_dir, f"{hash_id}.png")
image.save(path)
return str(path)
@staticmethod
def extract_subimage(image: Image.Image, box: List[float]) -> Image.Image:
return image.crop((round(box[0]), round(box[1]), round(box[2]), round(box[3])))
def run(self, image: Image.Image) -> List[MultimodalObject]:
self.load()
path = self.save_image(image)
results: List[Results] = self.client(source=[path])
assert len(results) == 1
objects = []
for i, label_id in enumerate(results[0].boxes.cls):
label = results[0].names[label_id.item()]
score = results[0].boxes.conf[i].item()
box: List[float] = results[0].boxes.xyxy[i].tolist()
subimage = self.extract_subimage(image, box)
objects.append(
MultimodalObject(
image_string=convert_image_to_text(subimage),
category=label,
score=score,
)
)
return objects
class MultimodalPage(BaseModel):
number: int
objects: List[MultimodalObject]
text: str
image_string: str
source: str
score: float = 0.0
def get_tables_and_figures(self) -> List[MultimodalObject]:
return [o for o in self.objects if o.category in ["Table", "Picture"]]
def get_full_image(self) -> Image.Image:
return convert_text_to_image(self.image_string)
@classmethod
def from_text(cls, text: str):
return MultimodalPage(
text=text, number=0, objects=[], image_string="", source=""
)
@classmethod
def from_image(cls, image: Image.Image):
return MultimodalPage(
image_string=convert_image_to_text(image),
number=0,
objects=[],
text="",
source="",
)
class MultimodalDocument(BaseModel):
pages: List[MultimodalPage]
def get_page(self, i: int) -> MultimodalPage:
pages = [p for p in self.pages if p.number == i]
assert len(pages) == 1
return pages[0]
@classmethod
def load_from_pdf(cls, path: str, dpi: int = 150, detector: ObjectDetector = None):
# Each page as an image (with optional extracted text)
doc = fitz.open(path)
pages = []
for i, page in enumerate(tqdm(doc.pages(), desc=path)):
text = page.get_text()
zoom = dpi / 72 # 72 is the default DPI
matrix = fitz.Matrix(zoom, zoom)
pix = page.get_pixmap(matrix=matrix)
image = Image.frombytes("RGB", (pix.width, pix.height), pix.samples)
objects = []
if detector:
objects = detector.run(image)
for o in objects:
o.page, o.source = i + 1, path
pages.append(
MultimodalPage(
number=i + 1,
objects=objects,
text=text,
image_string=convert_image_to_text(image),
source=path,
)
)
return cls(pages=pages)
@classmethod
def load(cls, path: str):
pages = []
with open(path) as f:
for line in f:
pages.append(MultimodalPage(**json.loads(line)))
return cls(pages=pages)
def save(self, path: str):
Path(path).parent.mkdir(exist_ok=True, parents=True)
with open(path, "w") as f:
for o in self.pages:
print(o.model_dump_json(), file=f)
def get_domain(self) -> str:
filename = Path(self.pages[0].source).name
if filename.startswith("NYSE"):
return "Financial<br>Report"
elif filename[:4].isdigit() and filename[4] == "." and filename[5].isdigit():
return "Academic<br>Paper"
else:
return "Technical<br>Manuals"
class MultimodalRetriever(BaseModel, arbitrary_types_allowed=True):
def run(self, query: str, doc: MultimodalDocument) -> MultimodalDocument:
raise NotImplementedError
@staticmethod
def get_top_pages(doc: MultimodalDocument, k: int) -> List[int]:
# Get top-k in terms of score but maintain the original order
doc = doc.copy(deep=True)
pages = sorted(doc.pages, key=lambda x: x.score, reverse=True)
threshold = pages[:k][-1].score
return [p.number for p in doc.pages if p.score >= threshold]
class ColpaliRetriever(MultimodalRetriever):
path: str = "vidore/colpali-v1.2"
model: Optional[ColPali] = None
processor: Optional[ColPaliProcessor] = None
device: str = "cuda"
cache: OrderedDict[str, torch.Tensor] = CollectionsOrderedDict()
def load(self):
if self.model is None:
self.model = ColPali.from_pretrained(
self.path, torch_dtype=torch.bfloat16, device_map=self.device
)
self.model = self.model.eval()
self.processor = ColPaliProcessor.from_pretrained(self.path)
def encode_document(self, doc: MultimodalDocument) -> torch.Tensor:
hash_id = hashlib.md5(doc.json().encode()).hexdigest()
if len(self.cache) > 100:
self.cache.popitem(last=False)
if hash_id not in self.cache:
images = [page.get_full_image() for page in doc.pages]
batch_size = 8
ds: List[torch.Tensor] = []
for i in tqdm(range(0, len(images), batch_size), desc="Encoding document"):
batch = self.processor.process_images(images[i : i + batch_size])
with torch.no_grad():
# noinspection PyTypeChecker
ds.append(self.model(**batch.to(self.device)).cpu())
lengths = [x.shape[1] for x in ds]
if len(set(lengths)) != 1:
print("Warning: Inconsistent lengths from colqwen", set(lengths))
assert "colqwen" in self.path
for i, x in enumerate(ds):
ds[i] = x[:, : min(lengths), :]
self.cache[hash_id] = torch.cat(ds)
return self.cache[hash_id]
def run(self, query: str, doc: MultimodalDocument) -> MultimodalDocument:
doc = doc.copy(deep=True)
self.load()
ds = self.encode_document(doc)
with torch.no_grad():
# noinspection PyTypeChecker
qs = self.model(**self.processor.process_queries([query]).to(self.device))
# noinspection PyTypeChecker
scores = self.processor.score_multi_vector(qs.cpu(), ds).squeeze()
assert len(scores) == len(doc.pages)
for i, page in enumerate(doc.pages):
page.score = scores[i].item()
return doc
class DummyRetriever(MultimodalRetriever):
def run(self, query: str, doc: MultimodalDocument) -> MultimodalDocument:
doc = doc.copy(deep=True)
for i, page in enumerate(doc.pages):
page.score = i
return doc
def convert_image_to_text(image: Image) -> str:
# This is also how OpenAI encodes images: https://platform.openai.com/docs/guides/vision
with io.BytesIO() as output:
image.save(output, format="PNG")
data = output.getvalue()
return base64.b64encode(data).decode("utf-8")
def convert_text_to_image(text: str) -> Image:
data = base64.b64decode(text.encode("utf-8"))
return Image.open(io.BytesIO(data))
def save_image(image: Image.Image, folder: str) -> str:
image_hash = hashlib.md5(image.tobytes()).hexdigest()
path = Path(folder, f"{image_hash}.png")
path.parent.mkdir(exist_ok=True, parents=True)
if not path.exists():
image.save(path)
return str(path)
def resize_image(image: Image.Image, max_size: int) -> Image.Image:
# Same as modeling.py resize_image
width, height = image.size
if width <= max_size and height <= max_size:
return image
if width > height:
new_width = max_size
new_height = round(height * max_size / width)
else:
new_height = max_size
new_width = round(width * max_size / height)
return image.resize((new_width, new_height), Image.LANCZOS)
class EvalModel(BaseModel, arbitrary_types_allowed=True):
engine: str
timeout: int = 60
temperature: float = 0.0
max_output_tokens: int = 512
def run(self, inputs: List[Union[str, Image.Image]]) -> str:
raise NotImplementedError
def run_many(self, inputs: List[Union[str, Image.Image]], num: int) -> List[str]:
raise NotImplementedError
class SwiftQwenModel(EvalModel):
# https://github.com/modelscope/ms-swift/blob/main/docs/source_en/Multi-Modal/qwen2-vl-best-practice.md
path: str = ""
model: Optional[Qwen2VLForConditionalGeneration] = None
tokenizer: Optional[PreTrainedTokenizer] = None
engine: str = ModelType.qwen2_vl_7b_instruct
image_size: int = 768
image_dir: str = "data/qwen_images"
def load(self):
if self.model is None or self.tokenizer is None:
self.model, self.tokenizer = get_model_tokenizer(
self.engine,
torch.bfloat16,
model_kwargs={"device_map": "auto"},
model_id_or_path=self.path or None,
)
def run(self, inputs: List[Union[str, Image.Image]]) -> str:
self.load()
template_type = get_default_template_type(self.engine)
self.model.generation_config.max_new_tokens = self.max_output_tokens
template = get_template(template_type, self.tokenizer)
text = "\n\n".join([x for x in inputs if isinstance(x, str)])
content = []
for x in inputs:
if isinstance(x, Image.Image):
path = save_image(resize_image(x, self.image_size), self.image_dir)
content.append(f"<img>{path}</img>")
content.append(text)
query = "".join(content)
response, history = inference(self.model, template, query)
return response
def run_stream(self, inputs: List[Union[str, Image.Image]]) -> Iterator[str]:
self.load()
template_type = get_default_template_type(self.engine)
self.model.generation_config.max_new_tokens = self.max_output_tokens
template = get_template(template_type, self.tokenizer)
text = "\n\n".join([x for x in inputs if isinstance(x, str)])
content = []
for x in inputs:
if isinstance(x, Image.Image):
path = save_image(resize_image(x, self.image_size), self.image_dir)
content.append(f"<img>{path}</img>")
content.append(text)
query = "".join(content)
generator = inference_stream(self.model, template, query)
print_idx = 0
print(f"query: {query}\nresponse: ", end="")
for response, history in generator:
delta = response[print_idx:]
print(delta, end="", flush=True)
print_idx = len(response)
yield delta
class QwenModel(EvalModel):
path: str = "models/qwen"
engine: str = "Qwen/Qwen2-VL-7B-Instruct"
model: Optional[Qwen2VLForConditionalGeneration] = None
processor: Optional[Qwen2VLProcessor] = None
tokenizer: Optional[AutoTokenizer] = None
device: str = "cuda"
image_size: int = 768
lora_path: str = ""
def load(self):
if self.model is None:
path = self.path if os.path.exists(self.path) else self.engine
print(dict(load_path=path))
# noinspection PyTypeChecker
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
path, torch_dtype="auto", device_map="auto"
)
self.tokenizer = AutoTokenizer.from_pretrained(self.engine)
if self.lora_path:
print("Loading LORA from", self.lora_path)
self.model.load_adapter(self.lora_path)
self.model = self.model.to(self.device).eval()
self.processor = Qwen2VLProcessor.from_pretrained(self.engine)
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
def make_messages(self, inputs: List[Union[str, Image.Image]]) -> List[dict]:
text = "\n\n".join([x for x in inputs if isinstance(x, str)])
content = [
dict(
type="image",
image=f"data:image;base64,{convert_image_to_text(resize_image(x, self.image_size))}",
)
for x in inputs
if isinstance(x, Image.Image)
]
content.append(dict(type="text", text=text))
return [dict(role="user", content=content)]
def run(self, inputs: List[Union[str, Image.Image]]) -> str:
self.load()
messages = self.make_messages(inputs)
text = self.processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
# noinspection PyTypeChecker
model_inputs = self.processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to(self.device)
with torch.inference_mode():
generated_ids = self.model.generate(
**model_inputs, max_new_tokens=self.max_output_tokens
)
generated_ids_trimmed = [
out_ids[len(in_ids) :]
for in_ids, out_ids in zip(model_inputs.input_ids, generated_ids)
]
output_text = self.processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)
return output_text[0]
def run_stream(self, inputs: List[Union[str, Image.Image]]) -> Iterator[str]:
self.load()
messages = self.make_messages(inputs)
text = self.processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
# noinspection PyTypeChecker
model_inputs = self.processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to(self.device)
streamer = TextIteratorStreamer(
self.tokenizer,
timeout=10.0,
skip_prompt=True,
skip_special_tokens=True,
)
generate_kwargs = dict(
**model_inputs,
streamer=streamer,
max_new_tokens=self.max_output_tokens,
)
t = Thread(target=self.model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
class DummyModel(EvalModel):
engine: str = ""
def run(self, inputs: List[Union[str, Image.Image]]) -> str:
return " ".join(inputs)
def run_stream(self, inputs: List[Union[str, Image.Image]]) -> Iterator[str]:
assert self is not None
text = " ".join([x for x in inputs if isinstance(x, str)])
num_images = sum(1 for x in inputs if isinstance(x, Image.Image))
tokens = f"Hello this is your message: {text}, images: {num_images}".split()
for i in range(len(tokens)):
yield " ".join(tokens[: i + 1])
import time
time.sleep(0.05)
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model = QwenModel()
model.load()
detect_model = YoloDetector()
detect_model.load()
retriever = ColpaliRetriever()
retriever.load()
else:
model = DummyModel()
detect_model = None
retriever = DummyRetriever()
def get_file_path(file: gr.File = None, url: str = None) -> Optional[str]:
if file is not None:
# noinspection PyUnresolvedReferences
return file.name
if url is not None:
response = requests.get(url)
response.raise_for_status()
save_path = Path(tempfile.mkdtemp(), url.split("/")[-1])
if "application/pdf" in response.headers.get("Content-Type", ""):
# Open the file in binary write mode
with open(save_path, "wb") as file:
file.write(response.content)
return str(save_path)
@spaces.GPU
def generate(
query: str, file: gr.File = None, url: str = None, top_k=5
) -> Iterator[str]:
sample = MultimodalSample(question=query, answer="", category="")
path = get_file_path(file, url)
if path is not None:
doc = MultimodalDocument.load_from_pdf(path, detector=detect_model)
output = retriever.run(sample.question, doc)
sorted_pages = sorted(output.pages, key=lambda p: p.score, reverse=True)
sample.retrieved_pages = sorted([p.number for p in sorted_pages][:top_k])
context = []
for p in doc.pages:
if p.number in sample.retrieved_pages:
if p.text:
context.append(p.text)
context.extend(o.get_image() for o in p.get_tables_and_figures())
inputs = [
"Context:",
*context,
f"Answer the following question in 200 words or less: {sample.question}",
]
else:
inputs = [
"Context:",
f"Answer the following question in 200 words or less: {sample.question}",
]
for text in model.run_stream(inputs):
yield text
with gr.Blocks(css_paths="style.css", fill_height=True) as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use", elem_id="duplicate-button"
)
with gr.Row():
pdf_upload = gr.File(label="Upload PDF (optional)", file_types=[".pdf"])
with gr.Column():
url_input = gr.Textbox(label="Enter PDF URL (optional)")
text_input = gr.Textbox(label="Enter your message", lines=3)
submit_button = gr.Button("Submit")
result = gr.Textbox(label="Response", lines=10)
submit_button.click(
generate, inputs=[text_input, pdf_upload, url_input], outputs=result
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|