Diffusion80XX / app.py
charliebaby2023's picture
Update app.py
d6deb6c verified
import gradio as gr
from random import randint
from all_models import models
from datetime import datetime
from concurrent.futures import TimeoutError, ThreadPoolExecutor
import numpy as np
import time
import requests
import logging
logging.basicConfig(level=logging.WARNING)
now2 = 0
index_tracker = 0 # Index tracker for the current model
model_scores = {model: 0 for model in models} # Dictionary to track scores for each model
processed_models_count = 0
kii=" blonde mohawk femboy playing game with self at computer with programmer socks on, still a wip"
combined_prompt = ""
def get_current_time():
now = datetime.now()
now2 = now
current_time = now2.strftime("%Y-%m-%d %H:%M:%S")
ki = f'{kii} {current_time}'
return ki
# Sanitize file names and truncate them
def sanitize_file_name(file_name, max_length=100):
"""Shortens and removes unsafe characters from file name."""
file_name = file_name[:max_length]
return file_name.replace(" ", "_").replace("/", "_")
def load_fn(models):
global models_load
models_load = {}
for model in models:
if model not in models_load.keys():
try:
m = gr.load(f'models/{model}')
print(f"{m}\n");
except Exception as error:
print(f"Error loading model {model}: {error}\n")
m = gr.Interface(lambda _: None, inputs=gr.Textbox(), outputs=gr.Image(), queue=False)
models_load.update({model: m})
load_fn(models)
num_models = len(models)
default_models = models[:num_models]
def extend_choices(choices):
return choices + (num_models - len(choices)) * ['NA']
def update_imgbox(choices):
choices_plus = extend_choices(choices)
return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus]
executor = ThreadPoolExecutor(max_workers=num_models)
def gen_fn(model_str, prompt):
global index_tracker, model_scores, processed_models_count
if model_str == 'NA':
return None
try:
index_tracker = (index_tracker + 1) % len(models)
current_model_index = index_tracker
current_model_name = models[current_model_index]
max_prompt_length = 100
truncated_prompt = sanitize_file_name(prompt[:max_prompt_length])
combined_prompt = f"{truncated_prompt}_{randint(0, 9999)}"
# Execute the model's processing with a timeout
future = executor.submit(models_load[model_str], f"{combined_prompt}")
response = future.result(timeout=150) # Wait for result with timeout
if isinstance(response, gr.Image):
return response
elif isinstance(response, tuple):
return None
elif isinstance(response, str):
if processed_models_count == 0:
print(f"**************")
# print(f"{prompt}")
# print(f"{prompt}")
# print(f"{prompt}")
print(f"**************")
model_scores[current_model_name] += 1
print(f"OOO n:{processed_models_count} x:{current_model_index} r[{model_scores[current_model_name]}] {model_str}")
processed_models_count += 1
if processed_models_count == len(models):
print("\nCycle Complete! Updated Scores:")
print(model_scores)
processed_models_count = 0
return response
except TimeoutError:
print(f"TimeoutError: Model '{model_str}' did not respond within 150 seconds.")
processed_models_count += 1
if processed_models_count == len(models):
print("\nCycle Complete! Updated Scores:")
print(model_scores)
processed_models_count = 0
return None
except Exception as e:
if processed_models_count == 0:
print(f"**************")
# print(f"{prompt}")
# print(f"{prompt}")
# print(f"{prompt}")
print(f"**************")
print(f"--- n:{processed_models_count} x:{current_model_index} r[{model_scores[current_model_name]}] {model_str}")
processed_models_count += 1
if processed_models_count == len(models):
print("\nCycle Complete! Updated Scores:")
print(model_scores)
processed_models_count = 0
return None
def make_me():
with gr.Row():
txt_input = gr.Textbox(lines=2, value=kii, label=None)
gen_button = gr.Button('Generate images')
stop_button = gr.Button('Stop', variant='secondary', interactive=False)
gen_button.click(lambda _: gr.update(interactive=True), None, stop_button)
gen_button.click(lambda _: gr.update(interactive=True), None)
gr.HTML(""" <div style="text-align: center; max-width: 100%; margin: 0 auto;"> <body> </body> </div> """)
with gr.Row():
output = [gr.Image(label=m) for m in default_models]
current_models = [gr.Textbox(m, visible=False) for m in default_models]
for m, o in zip(current_models, output):
gen_event = gen_button.click(gen_fn, [m, txt_input], o, queue=False)
# stop_button.click(lambda _: gr.update(interactive=False), None, stop_button, cancels=[gen_event])
with gr.Accordion('Model selection', visible=False):
model_choice = gr.CheckboxGroup(models, label=f' {num_models} different models selected', value=default_models, interactive=True)
model_choice.change(update_imgbox, model_choice, output)
model_choice.change(extend_choices, model_choice, current_models)
js_code = """<script>const originalScroll = window.scrollTo; const originalShowToast = gradio.Toast.show;
gradio.Toast.show = function() { originalShowToast.apply(this, arguments); window.scrollTo = function() {};};
setTimeout(() => { window.scrollTo = originalScroll; }, 1000); // Restore scroll function after 3 seconds</script>"""
with gr.Blocks(css="""
label.float.svelte-i3tvor { top:auto!important; bottom: 0; position: absolute; background: rgba(0,0,0,0.0); left: var(--block-label-margin); color: rgba(200,200,200,.7);}
.genbut { max-width: 50px; max-height: 30px; width:150px; height:30px}
.stopbut { max-width: 50px; max-height: 30px; width:150px; height:30px}
.float.svelte-1mwvhlq { position: absolute; top: var(--block-label-margin); left: var(--block-label-margin); background: none; border: none;}
textarea:hover { background:#55555555;}
textarea { overflow-y: scroll; top:0px; width: 100%; height:100%!important; font-size: 1.5em; letter-spacing: 3px; color: limegreen; border: none!important; background: none; outline: none !important; }
.form.svelte-633qhp{ flex-grow: 1; position: absolute; right: 0px; border-radius: 6px; z-index: 400000; resize: both; left: 52%; background: rgba(103, 103, 114, 0.35); height: 46px; width: 48%!important;}
label.svelte-173056l.svelte-173056l { display: block; width: 100%; height: 100%;}
.input-container.svelte-173056l.svelte-173056l { /* display: flex; */ position: absolute; border: 1px solid; padding: 0px; /* height: calc(100% - 32px); */ /* align-items: flex-end; */ border-radius: 6px; margin: 0px; top: 0px; left: 0px; /* bottom: -16px; */ width: 100%; min-height: 100%;}
textarea{ position: absolute; font-size: 1em !important; padding: 4px; background: none; height: 100% !important; height: 100%;}
.svelte-11xb1hd.padded{background:none;}span.svelte-1gfkn6j:not(.has-info) { margin-bottom: var(--spacing-lg); display: none;}
.lg.secondary{ min-width:20%!imoprtant; width: 150px !important; flex: none !important;}
.unpadded_box.svelte-1oiin9d { margin-top: 0; margin-left: auto!important; max-height: 134px!important; min-height: 156px!important; margin-right: auto!important; min-width: 133px !important;}
}""") as demo:
gr.Markdown("<script>" + js_code + "</script>")
make_me()
demo.queue()
demo.queue = False
demo.config["queue"] = False
demo.launch(max_threads=200)