Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -61,7 +61,10 @@ def fill_up_placeholders(txt):
|
|
61 |
"" if len(placeholders) >= 1 else txt
|
62 |
)
|
63 |
|
64 |
-
async def chat_stream(
|
|
|
|
|
|
|
65 |
res = [
|
66 |
chat_state["ppmanager_type"].from_json(json.dumps(ppm))
|
67 |
for ppm in local_data
|
@@ -71,8 +74,18 @@ async def chat_stream(idx, local_data, instruction_txtbox, chat_state):
|
|
71 |
ppm.add_pingpong(
|
72 |
PingPong(instruction_txtbox, "")
|
73 |
)
|
74 |
-
prompt = build_prompts(ppm,
|
75 |
-
async for result in gen_text(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
ppm.append_pong(result)
|
77 |
yield ppm.build_uis(), str(res)
|
78 |
|
@@ -198,7 +211,7 @@ with gr.Blocks(css=MODEL_SELECTION_CSS, theme='gradio/soft') as demo:
|
|
198 |
with gr.Column():
|
199 |
with gr.Column():
|
200 |
gr.Markdown("#### Global context")
|
201 |
-
with gr.Accordion("global context will persist during conversation, and it is placed at the top of the prompt", open=
|
202 |
global_context = gr.Textbox(
|
203 |
"global context",
|
204 |
lines=5,
|
@@ -218,31 +231,12 @@ with gr.Blocks(css=MODEL_SELECTION_CSS, theme='gradio/soft') as demo:
|
|
218 |
|
219 |
gr.Markdown("#### GenConfig for **response** text generation")
|
220 |
with gr.Row():
|
221 |
-
res_temp = gr.Slider(0.0, 2.0, 0, step=0.1, label="temp", interactive=True)
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
res_mnts = gr.Slider(64, 8192, 0, step=1, label="new_tokens", interactive=True)
|
226 |
-
res_beams = gr.Slider(1, 4, 0, step=1, label="beams")
|
227 |
-
res_cache = gr.Radio([True, False], value=0, label="cache", interactive=True)
|
228 |
res_sample = gr.Radio([True, False], value=0, label="sample", interactive=True)
|
229 |
-
|
230 |
-
res_padid = gr.Number(value=0, visible=False, precision=0)
|
231 |
-
|
232 |
-
with gr.Column(visible=False):
|
233 |
-
gr.Markdown("#### GenConfig for **summary** text generation")
|
234 |
-
with gr.Row():
|
235 |
-
sum_temp = gr.Slider(0.0, 2.0, 0, step=0.1, label="temp", interactive=True)
|
236 |
-
sum_topp = gr.Slider(0.0, 2.0, 0, step=0.1, label="top_p", interactive=True)
|
237 |
-
sum_topk = gr.Slider(20, 1000, 0, step=1, label="top_k", interactive=True)
|
238 |
-
sum_rpen = gr.Slider(0.0, 2.0, 0, step=0.1, label="rep_penalty", interactive=True)
|
239 |
-
sum_mnts = gr.Slider(64, 8192, 0, step=1, label="new_tokens", interactive=True)
|
240 |
-
sum_beams = gr.Slider(1, 8, 0, step=1, label="beams", interactive=True)
|
241 |
-
sum_cache = gr.Radio([True, False], value=0, label="cache", interactive=True)
|
242 |
-
sum_sample = gr.Radio([True, False], value=0, label="sample", interactive=True)
|
243 |
-
sum_eosid = gr.Number(value=0, visible=False, precision=0)
|
244 |
-
sum_padid = gr.Number(value=0, visible=False, precision=0)
|
245 |
-
|
246 |
with gr.Column():
|
247 |
gr.Markdown("#### Context managements")
|
248 |
with gr.Row():
|
@@ -255,7 +249,8 @@ with gr.Blocks(css=MODEL_SELECTION_CSS, theme='gradio/soft') as demo:
|
|
255 |
|
256 |
instruction_txtbox.submit(
|
257 |
chat_stream,
|
258 |
-
[idx, local_data, instruction_txtbox, chat_state
|
|
|
259 |
[chatbot, local_data]
|
260 |
)
|
261 |
|
|
|
61 |
"" if len(placeholders) >= 1 else txt
|
62 |
)
|
63 |
|
64 |
+
async def chat_stream(
|
65 |
+
idx, local_data, instruction_txtbox, chat_state,
|
66 |
+
global_context, res_temp, res_topk, res_rpen, res_mnts, res_sample, ctx_num_lconv
|
67 |
+
):
|
68 |
res = [
|
69 |
chat_state["ppmanager_type"].from_json(json.dumps(ppm))
|
70 |
for ppm in local_data
|
|
|
74 |
ppm.add_pingpong(
|
75 |
PingPong(instruction_txtbox, "")
|
76 |
)
|
77 |
+
prompt = build_prompts(ppm, global_context, ctx_num_lconv)
|
78 |
+
async for result in gen_text(
|
79 |
+
prompt, hf_model=MODEL_ID, hf_token=TOKEN,
|
80 |
+
parameters={
|
81 |
+
'max_new_tokens': res_mnts,
|
82 |
+
'do_sample': res_sample,
|
83 |
+
'return_full_text': False,
|
84 |
+
'temperature': res_temp,
|
85 |
+
'top_k': res_topk,
|
86 |
+
'repetition_penalty': res_rpen
|
87 |
+
}
|
88 |
+
):
|
89 |
ppm.append_pong(result)
|
90 |
yield ppm.build_uis(), str(res)
|
91 |
|
|
|
211 |
with gr.Column():
|
212 |
with gr.Column():
|
213 |
gr.Markdown("#### Global context")
|
214 |
+
with gr.Accordion("global context will persist during conversation, and it is placed at the top of the prompt", open=True):
|
215 |
global_context = gr.Textbox(
|
216 |
"global context",
|
217 |
lines=5,
|
|
|
231 |
|
232 |
gr.Markdown("#### GenConfig for **response** text generation")
|
233 |
with gr.Row():
|
234 |
+
res_temp = gr.Slider(0.0, 2.0, 1.0, step=0.1, label="temp", interactive=True)
|
235 |
+
res_topk = gr.Slider(20, 1000, 50, step=1, label="top_k", interactive=True)
|
236 |
+
res_rpen = gr.Slider(0.0, 2.0, 1.2, step=0.1, label="rep_penalty", interactive=True)
|
237 |
+
res_mnts = gr.Slider(64, 8192, 512, step=1, label="new_tokens", interactive=True)
|
|
|
|
|
|
|
238 |
res_sample = gr.Radio([True, False], value=0, label="sample", interactive=True)
|
239 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
with gr.Column():
|
241 |
gr.Markdown("#### Context managements")
|
242 |
with gr.Row():
|
|
|
249 |
|
250 |
instruction_txtbox.submit(
|
251 |
chat_stream,
|
252 |
+
[idx, local_data, instruction_txtbox, chat_state,
|
253 |
+
global_context, res_temp, res_topk, res_rpen, res_mnts, res_sample, ctx_num_lconv],
|
254 |
[chatbot, local_data]
|
255 |
)
|
256 |
|