Spaces:
Runtime error
Runtime error
File size: 10,013 Bytes
ad74093 4c5289e ad74093 4c5289e 8dc61d0 4c5289e ad74093 4c5289e 5fc3ac3 4c5289e ad74093 d015acd ad74093 4c5289e d015acd 4c5289e d015acd 4c5289e 4f8ddde 4c5289e 8dc61d0 8b9d8ef 4c5289e d015acd 1770058 d015acd 1770058 d015acd 1770058 d015acd 4c5289e ad74093 4c5289e ad74093 4c5289e ad74093 4c5289e ad74093 4c5289e ad74093 4c5289e d015acd 4c5289e ad74093 4c5289e ad74093 8b9d8ef 4c5289e ad74093 4c5289e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
"""⭐ Text Classification with Optimum and ONNXRuntime
Streamlit application to classify text using multiple models.
Author:
- @ChainYo - https://github.com/ChainYo
"""
import plotly
import plotly.figure_factory as ff
import numpy as np
import pandas as pd
import streamlit as st
from pathlib import Path
from time import sleep
from typing import Dict, List, Union
from optimum.onnxruntime import ORTModelForSequenceClassification, ORTOptimizer, ORTQuantizer
from optimum.onnxruntime.configuration import OptimizationConfig, AutoQuantizationConfig
from optimum.pipelines import pipeline as ort_pipeline
from transformers import BertTokenizer, BertForSequenceClassification
from transformers import pipeline as pt_pipeline
from utils import calculate_inference_time
HUB_MODEL_PATH = "yiyanghkust/finbert-tone"
BASE_PATH = Path("models")
ONNX_MODEL_PATH = BASE_PATH.joinpath("model.onnx")
OPTIMIZED_BASE_PATH = BASE_PATH.joinpath("optimized")
OPTIMIZED_MODEL_PATH = OPTIMIZED_BASE_PATH.joinpath("model-optimized.onnx")
QUANTIZED_BASE_PATH = BASE_PATH.joinpath("quantized")
QUANTIZED_MODEL_PATH = QUANTIZED_BASE_PATH.joinpath("model-quantized.onnx")
VAR2LABEL = {
"pt_pipeline": "PyTorch",
"ort_pipeline": "ONNXRuntime",
"ort_optimized_pipeline": "ONNXRuntime (Optimized)",
"ort_quantized_pipeline": "ONNXRuntime (Quantized)",
}
# Check if repositories exist, if not create them
BASE_PATH.mkdir(exist_ok=True)
QUANTIZED_BASE_PATH.mkdir(exist_ok=True)
OPTIMIZED_BASE_PATH.mkdir(exist_ok=True)
def get_timers(
samples: Union[List[str], str], exp_number: int, only_mean: bool = False
) -> Dict[str, float]:
"""
Calculate inference time for each model for a given sample or list of samples.
Parameters
----------
samples : Union[List[str], str]
Sample or list of samples to calculate inference time for.
exp_number : int
Number of experiments to run.
Returns
-------
Dict[str, float]
Dictionary of inference times for each model for the given samples.
"""
if isinstance(samples, str):
samples = [samples]
timers: Dict[str, float] = {}
for model in VAR2LABEL.keys():
time_buffer = []
st.session_state["pipeline"] = load_pipeline(model)
for _ in range(exp_number):
with calculate_inference_time(time_buffer):
st.session_state["pipeline"](samples)
timers[VAR2LABEL[model]] = np.mean(time_buffer) if only_mean else time_buffer
return timers
def get_plot(timers: Dict[str, Union[float, List[float]]]) -> plotly.graph_objs.Figure:
"""
Plot the inference time for each model.
Parameters
----------
timers : Dict[str, Union[float, List[float]]]
Dictionary of inference times for each model.
"""
data = pd.DataFrame.from_dict(timers, orient="columns")
colors = ["#84353f", "#b4524b", "#f47e58", "#ffbe67"]
fig = ff.create_distplot(
[data[col] for col in data.columns], data.columns, bin_size=0.001, colors=colors, show_curve=False
)
fig.update_layout(title_text="Inference Time", xaxis_title="Inference Time (s)", yaxis_title="Number of Samples")
return fig
def load_pipeline(pipeline_name: str) -> None:
"""
Load a pipeline for a given model.
Parameters
----------
pipeline_name : str
Name of the pipeline to load.
"""
if pipeline_name == "pt_pipeline":
model = BertForSequenceClassification.from_pretrained(HUB_MODEL_PATH, num_labels=3)
pipeline = pt_pipeline("sentiment-analysis", tokenizer=st.session_state["tokenizer"], model=model)
elif pipeline_name == "ort_pipeline":
model = ORTModelForSequenceClassification.from_pretrained(HUB_MODEL_PATH, from_transformers=True)
if not ONNX_MODEL_PATH.exists():
model.save_pretrained(ONNX_MODEL_PATH)
pipeline = ort_pipeline("text-classification", tokenizer=st.session_state["tokenizer"], model=model)
elif pipeline_name == "ort_optimized_pipeline":
if not OPTIMIZED_MODEL_PATH.exists():
optimization_config = OptimizationConfig(optimization_level=99)
optimizer = ORTOptimizer.from_pretrained(HUB_MODEL_PATH, feature="sequence-classification")
optimizer.export(ONNX_MODEL_PATH, OPTIMIZED_MODEL_PATH, optimization_config=optimization_config)
optimizer.model.config.save_pretrained(OPTIMIZED_BASE_PATH)
model = ORTModelForSequenceClassification.from_pretrained(
OPTIMIZED_BASE_PATH, file_name=OPTIMIZED_MODEL_PATH.name
)
pipeline = ort_pipeline("text-classification", tokenizer=st.session_state["tokenizer"], model=model)
elif pipeline_name == "ort_quantized_pipeline":
if not QUANTIZED_MODEL_PATH.exists():
quantization_config = AutoQuantizationConfig.arm64(is_static=False, per_channel=False)
quantizer = ORTQuantizer.from_pretrained(HUB_MODEL_PATH, feature="sequence-classification")
quantizer.export(ONNX_MODEL_PATH, QUANTIZED_MODEL_PATH, quantization_config=quantization_config)
quantizer.model.config.save_pretrained(QUANTIZED_BASE_PATH)
model = ORTModelForSequenceClassification.from_pretrained(
QUANTIZED_BASE_PATH, file_name=QUANTIZED_MODEL_PATH.name
)
pipeline = ort_pipeline("text-classification", tokenizer=st.session_state["tokenizer"], model=model)
print(type(pipeline))
return pipeline
st.set_page_config(page_title="Optimum Text Classification", page_icon="⭐")
st.title("⭐ Optimum Text Classification")
st.subheader("Classify financial news tone with 🤗 Optimum and ONNXRuntime")
st.markdown("""
[![GitHub](https://img.shields.io/badge/-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/ChainYo)
[![HuggingFace](https://img.shields.io/badge/-yellow.svg?style=for-the-badge&logo=)](https://huggingface.co/ChainYo)
[![LinkedIn](https://img.shields.io/badge/-%230077B5.svg?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/thomas-chaigneau-dev/)
[![Discord](https://img.shields.io/badge/Chainyo%233610-%237289DA.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/)
""")
with st.expander("⭐ Details", expanded=True):
st.markdown(
"""
This app is a **demo** of the [🤗 Optimum Text Classification](https://huggingface.co/docs/optimum/onnxruntime/modeling_ort#optimum-inference-with-onnx-runtime) pipeline.
We aim to compare the original pipeline with the ONNXRuntime pipeline.
We use the [Finbert-Tone](https://huggingface.co/yiyanghkust/finbert-tone) model to classify financial news tone for the demo.
You can enter multiple sentences to classify them by separating them with a `; (semicolon)`.
"""
)
if "init_models" not in st.session_state:
st.session_state["init_models"] = True
if st.session_state["init_models"]:
with st.spinner(text="Loading files and models..."):
loading_logs = st.empty()
with loading_logs.container():
BASE_PATH.mkdir(exist_ok=True)
QUANTIZED_BASE_PATH.mkdir(exist_ok=True)
OPTIMIZED_BASE_PATH.mkdir(exist_ok=True)
if "tokenizer" not in st.session_state:
tokenizer = BertTokenizer.from_pretrained(HUB_MODEL_PATH)
st.session_state["tokenizer"] = tokenizer
st.text("✅ Tokenizer loaded.")
if "pipeline" not in st.session_state:
for pipeline in VAR2LABEL.keys():
st.session_state["pipeline"] = load_pipeline(pipeline)
st.text("✅ Models ready.")
sleep(2)
loading_logs.success("🎉 Everything is ready!")
st.session_state["init_models"] = False
if "inference_timers" not in st.session_state:
st.session_state["inference_timers"] = {}
exp_number = st.slider("The number of experiments per model.", min_value=10, max_value=300, value=150)
get_only_mean = st.checkbox("Get only the mean of the inference time for each model.", value=False)
input_text = st.text_area(
"Enter text to classify",
"there is a shortage of capital, and we need extra financing; growth is strong and we have plenty of liquidity; there are doubts about our finances; profits are flat"
)
run_inference = st.button("🚀 Run inference")
if run_inference:
st.text("🔎 Running inference...")
sentences = input_text.split(";")
st.session_state["inference_timers"] = get_timers(samples=sentences, exp_number=exp_number, only_mean=get_only_mean)
st.plotly_chart(get_plot(st.session_state["inference_timers"]), use_container_width=True)
|