Thomas.Chaigneau
commited on
Commit
·
6de6ae4
1
Parent(s):
52c4b0e
add model
Browse files
model.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytorch_lightning as pl
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
from typing import Dict, List, Optional, OrderedDict, Tuple
|
8 |
+
|
9 |
+
|
10 |
+
class Discriminator(nn.Module):
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
hidden_size: Optional[int] = 64,
|
14 |
+
channels: Optional[int] = 3,
|
15 |
+
kernel_size: Optional[int] = 4,
|
16 |
+
stride: Optional[int] = 2,
|
17 |
+
padding: Optional[int] = 1,
|
18 |
+
negative_slope: Optional[float] = 0.2,
|
19 |
+
bias: Optional[bool] = False,
|
20 |
+
):
|
21 |
+
"""
|
22 |
+
Initializes the discriminator.
|
23 |
+
|
24 |
+
Parameters
|
25 |
+
----------
|
26 |
+
hidden_size : int, optional
|
27 |
+
The input size. (the default is 64)
|
28 |
+
channels : int, optional
|
29 |
+
The number of channels. (default: 3)
|
30 |
+
kernel_size : int, optional
|
31 |
+
The kernal size. (default: 4)
|
32 |
+
stride : int, optional
|
33 |
+
The stride. (default: 2)
|
34 |
+
padding : int, optional
|
35 |
+
The padding. (default: 1)
|
36 |
+
negative_slope : float, optional
|
37 |
+
The negative slope. (default: 0.2)
|
38 |
+
bias : bool, optional
|
39 |
+
Whether to use bias. (default: False)
|
40 |
+
"""
|
41 |
+
super().__init__()
|
42 |
+
self.hidden_size = hidden_size
|
43 |
+
self.channels = channels
|
44 |
+
self.kernel_size = kernel_size
|
45 |
+
self.stride = stride
|
46 |
+
self.padding = padding
|
47 |
+
self.negative_slope = negative_slope
|
48 |
+
self.bias = bias
|
49 |
+
|
50 |
+
self.model = nn.Sequential(
|
51 |
+
nn.utils.spectral_norm(
|
52 |
+
nn.Conv2d(
|
53 |
+
self.channels, self.hidden_size,
|
54 |
+
kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, bias=self.bias
|
55 |
+
),
|
56 |
+
),
|
57 |
+
nn.LeakyReLU(self.negative_slope, inplace=True),
|
58 |
+
|
59 |
+
nn.utils.spectral_norm(
|
60 |
+
nn.Conv2d(
|
61 |
+
hidden_size, hidden_size * 2,
|
62 |
+
kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, bias=self.bias
|
63 |
+
),
|
64 |
+
),
|
65 |
+
nn.BatchNorm2d(hidden_size * 2),
|
66 |
+
nn.LeakyReLU(self.negative_slope, inplace=True),
|
67 |
+
|
68 |
+
nn.utils.spectral_norm(
|
69 |
+
nn.Conv2d(
|
70 |
+
hidden_size * 2, hidden_size * 4,
|
71 |
+
kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, bias=self.bias
|
72 |
+
),
|
73 |
+
),
|
74 |
+
nn.BatchNorm2d(hidden_size * 4),
|
75 |
+
nn.LeakyReLU(self.negative_slope, inplace=True),
|
76 |
+
|
77 |
+
nn.utils.spectral_norm(
|
78 |
+
nn.Conv2d(
|
79 |
+
hidden_size * 4, hidden_size * 8,
|
80 |
+
kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, bias=self.bias
|
81 |
+
),
|
82 |
+
),
|
83 |
+
nn.BatchNorm2d(hidden_size * 8),
|
84 |
+
nn.LeakyReLU(self.negative_slope, inplace=True),
|
85 |
+
|
86 |
+
nn.utils.spectral_norm(
|
87 |
+
nn.Conv2d(hidden_size * 8, 1, kernel_size=4, stride=1, padding=0, bias=self.bias), # output size: (1, 1, 1)
|
88 |
+
),
|
89 |
+
nn.Flatten(),
|
90 |
+
nn.Sigmoid(),
|
91 |
+
)
|
92 |
+
|
93 |
+
|
94 |
+
def forward(self, input_img: torch.Tensor) -> torch.Tensor:
|
95 |
+
"""
|
96 |
+
Forward propagation.
|
97 |
+
|
98 |
+
Parameters
|
99 |
+
----------
|
100 |
+
input_img : torch.Tensor
|
101 |
+
The input image.
|
102 |
+
|
103 |
+
Returns
|
104 |
+
-------
|
105 |
+
torch.Tensor
|
106 |
+
The output.
|
107 |
+
"""
|
108 |
+
logits = self.model(input_img)
|
109 |
+
return logits
|
110 |
+
|
111 |
+
|
112 |
+
class Generator(nn.Module):
|
113 |
+
def __init__(
|
114 |
+
self,
|
115 |
+
hidden_size: Optional[int] = 64,
|
116 |
+
latent_size: Optional[int] = 128,
|
117 |
+
channels: Optional[int] = 3,
|
118 |
+
kernel_size: Optional[int] = 4,
|
119 |
+
stride: Optional[int] = 2,
|
120 |
+
padding: Optional[int] = 1,
|
121 |
+
bias: Optional[bool] = False,
|
122 |
+
):
|
123 |
+
"""
|
124 |
+
Initializes the generator.
|
125 |
+
|
126 |
+
Parameters
|
127 |
+
----------
|
128 |
+
hidden_size : int, optional
|
129 |
+
The hidden size. (default: 64)
|
130 |
+
latent_size : int, optional
|
131 |
+
The latent size. (default: 128)
|
132 |
+
channels : int, optional
|
133 |
+
The number of channels. (default: 3)
|
134 |
+
kernel_size : int, optional
|
135 |
+
The kernel size. (default: 4)
|
136 |
+
stride : int, optional
|
137 |
+
The stride. (default: 2)
|
138 |
+
padding : int, optional
|
139 |
+
The padding. (default: 1)
|
140 |
+
bias : bool, optional
|
141 |
+
Whether to use bias. (default: False)
|
142 |
+
"""
|
143 |
+
super().__init__()
|
144 |
+
self.hidden_size = hidden_size
|
145 |
+
self.latent_size = latent_size
|
146 |
+
self.channels = channels
|
147 |
+
self.kernel_size = kernel_size
|
148 |
+
self.stride = stride
|
149 |
+
self.padding = padding
|
150 |
+
self.bias = bias
|
151 |
+
|
152 |
+
self.model = nn.Sequential(
|
153 |
+
nn.ConvTranspose2d(
|
154 |
+
self.latent_size, self.hidden_size * 8,
|
155 |
+
kernel_size=self.kernel_size, stride=1, padding=0, bias=self.bias
|
156 |
+
),
|
157 |
+
nn.BatchNorm2d(self.hidden_size * 8),
|
158 |
+
nn.ReLU(inplace=True),
|
159 |
+
|
160 |
+
nn.ConvTranspose2d(
|
161 |
+
self.hidden_size * 8, self.hidden_size * 4,
|
162 |
+
kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, bias=self.bias
|
163 |
+
),
|
164 |
+
nn.BatchNorm2d(self.hidden_size * 4),
|
165 |
+
nn.ReLU(inplace=True),
|
166 |
+
|
167 |
+
nn.ConvTranspose2d(
|
168 |
+
self.hidden_size * 4, self.hidden_size * 2,
|
169 |
+
kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, bias=self.bias
|
170 |
+
),
|
171 |
+
nn.BatchNorm2d(self.hidden_size * 2),
|
172 |
+
nn.ReLU(inplace=True),
|
173 |
+
|
174 |
+
nn.ConvTranspose2d(
|
175 |
+
self.hidden_size * 2, self.hidden_size,
|
176 |
+
kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, bias=self.bias
|
177 |
+
),
|
178 |
+
nn.BatchNorm2d(self.hidden_size),
|
179 |
+
nn.ReLU(inplace=True),
|
180 |
+
|
181 |
+
nn.ConvTranspose2d(
|
182 |
+
self.hidden_size, self.channels,
|
183 |
+
kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, bias=self.bias
|
184 |
+
),
|
185 |
+
nn.Tanh() # output size: (channels, 64, 64)
|
186 |
+
)
|
187 |
+
|
188 |
+
|
189 |
+
def forward(self, input_noise: torch.Tensor) -> torch.Tensor:
|
190 |
+
"""
|
191 |
+
Forward propagation.
|
192 |
+
|
193 |
+
Parameters
|
194 |
+
----------
|
195 |
+
input_noise : torch.Tensor
|
196 |
+
The input image.
|
197 |
+
|
198 |
+
Returns
|
199 |
+
-------
|
200 |
+
torch.Tensor
|
201 |
+
The output.
|
202 |
+
"""
|
203 |
+
fake_img = self.model(input_noise)
|
204 |
+
return fake_img
|
205 |
+
|
206 |
+
|
207 |
+
class DocuGAN(pl.LightningModule):
|
208 |
+
def __init__(
|
209 |
+
self,
|
210 |
+
hidden_size: Optional[int] = 64,
|
211 |
+
latent_size: Optional[int] = 128,
|
212 |
+
num_channel: Optional[int] = 3,
|
213 |
+
learning_rate: Optional[float] = 0.0002,
|
214 |
+
batch_size: Optional[int] = 128,
|
215 |
+
bias1: Optional[float] = 0.5,
|
216 |
+
bias2: Optional[float] = 0.999,
|
217 |
+
):
|
218 |
+
"""
|
219 |
+
Initializes the LightningGan.
|
220 |
+
|
221 |
+
Parameters
|
222 |
+
----------
|
223 |
+
hidden_size : int, optional
|
224 |
+
The hidden size. (default: 64)
|
225 |
+
latent_size : int, optional
|
226 |
+
The latent size. (default: 128)
|
227 |
+
num_channel : int, optional
|
228 |
+
The number of channels. (default: 3)
|
229 |
+
learning_rate : float, optional
|
230 |
+
The learning rate. (default: 0.0002)
|
231 |
+
batch_size : int, optional
|
232 |
+
The batch size. (default: 128)
|
233 |
+
bias1 : float, optional
|
234 |
+
The bias1. (default: 0.5)
|
235 |
+
bias2 : float, optional
|
236 |
+
The bias2. (default: 0.999)
|
237 |
+
"""
|
238 |
+
super().__init__()
|
239 |
+
self.hidden_size = hidden_size
|
240 |
+
self.latent_size = latent_size
|
241 |
+
self.num_channel = num_channel
|
242 |
+
self.learning_rate = learning_rate
|
243 |
+
self.batch_size = batch_size
|
244 |
+
self.bias1 = bias1
|
245 |
+
self.bias2 = bias2
|
246 |
+
self.criterion = nn.BCELoss()
|
247 |
+
self.validation = torch.randn(self.batch_size, self.latent_size, 1, 1)
|
248 |
+
self.save_hyperparameters()
|
249 |
+
|
250 |
+
self.generator = Generator(
|
251 |
+
latent_size=self.latent_size, channels=self.num_channel, hidden_size=self.hidden_size
|
252 |
+
)
|
253 |
+
self.generator.apply(self.weights_init)
|
254 |
+
|
255 |
+
self.discriminator = Discriminator(channels=self.num_channel, hidden_size=self.hidden_size)
|
256 |
+
self.discriminator.apply(self.weights_init)
|
257 |
+
|
258 |
+
# self.model = InceptionV3() # For FID metric
|
259 |
+
|
260 |
+
|
261 |
+
def weights_init(self, m: nn.Module) -> None:
|
262 |
+
"""
|
263 |
+
Initializes the weights.
|
264 |
+
|
265 |
+
Parameters
|
266 |
+
----------
|
267 |
+
m : nn.Module
|
268 |
+
The module.
|
269 |
+
"""
|
270 |
+
classname = m.__class__.__name__
|
271 |
+
if classname.find("Conv") != -1:
|
272 |
+
nn.init.normal_(m.weight.data, 0.0, 0.02)
|
273 |
+
elif classname.find("BatchNorm") != -1:
|
274 |
+
nn.init.normal_(m.weight.data, 1.0, 0.02)
|
275 |
+
nn.init.constant_(m.bias.data, 0)
|
276 |
+
|
277 |
+
|
278 |
+
def configure_optimizers(self) -> Tuple[List[torch.optim.Optimizer], List]:
|
279 |
+
"""
|
280 |
+
Configures the optimizers.
|
281 |
+
|
282 |
+
Returns
|
283 |
+
-------
|
284 |
+
Tuple[List[torch.optim.Optimizer], List]
|
285 |
+
The optimizers and the LR schedulers.
|
286 |
+
"""
|
287 |
+
opt_generator = torch.optim.Adam(
|
288 |
+
self.generator.parameters(), lr=self.learning_rate, betas=(self.bias1, self.bias2)
|
289 |
+
)
|
290 |
+
opt_discriminator = torch.optim.Adam(
|
291 |
+
self.discriminator.parameters(), lr=self.learning_rate, betas=(self.bias1, self.bias2)
|
292 |
+
)
|
293 |
+
return [opt_generator, opt_discriminator], []
|
294 |
+
|
295 |
+
|
296 |
+
def forward(self, z: torch.Tensor) -> torch.Tensor:
|
297 |
+
"""
|
298 |
+
Forward propagation.
|
299 |
+
|
300 |
+
Parameters
|
301 |
+
----------
|
302 |
+
z : torch.Tensorh
|
303 |
+
The latent vector.
|
304 |
+
|
305 |
+
Returns
|
306 |
+
-------
|
307 |
+
torch.Tensor
|
308 |
+
The output.
|
309 |
+
"""
|
310 |
+
return self.generator(z)
|
311 |
+
|
312 |
+
|
313 |
+
def training_step(
|
314 |
+
self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int, optimizer_idx: int
|
315 |
+
) -> Dict:
|
316 |
+
"""
|
317 |
+
Training step.
|
318 |
+
|
319 |
+
Parameters
|
320 |
+
----------
|
321 |
+
batch : Tuple[torch.Tensor, torch.Tensor]
|
322 |
+
The batch.
|
323 |
+
batch_idx : int
|
324 |
+
The batch index.
|
325 |
+
optimizer_idx : int
|
326 |
+
The optimizer index.
|
327 |
+
|
328 |
+
Returns
|
329 |
+
-------
|
330 |
+
Dict
|
331 |
+
The training loss.
|
332 |
+
"""
|
333 |
+
real_images = batch["tr_image"]
|
334 |
+
|
335 |
+
if optimizer_idx == 0: # Only train the generator
|
336 |
+
fake_random_noise = torch.randn(self.batch_size, self.latent_size, 1, 1)
|
337 |
+
fake_random_noise = fake_random_noise.type_as(real_images)
|
338 |
+
fake_images = self(fake_random_noise)
|
339 |
+
|
340 |
+
# Try to fool the discriminator
|
341 |
+
preds = self.discriminator(fake_images)
|
342 |
+
loss = self.criterion(preds, torch.ones_like(preds))
|
343 |
+
self.log("g_loss", loss, on_step=False, on_epoch=True)
|
344 |
+
|
345 |
+
tqdm_dict = {"g_loss": loss}
|
346 |
+
output = OrderedDict({"loss": loss, "progress_bar": tqdm_dict, "log": tqdm_dict})
|
347 |
+
return output
|
348 |
+
|
349 |
+
elif optimizer_idx == 1: # Only train the discriminator
|
350 |
+
real_preds = self.discriminator(real_images)
|
351 |
+
real_loss = self.criterion(real_preds, torch.ones_like(real_preds))
|
352 |
+
|
353 |
+
# Generate fake images
|
354 |
+
real_random_noise = torch.randn(self.batch_size, self.latent_size, 1, 1)
|
355 |
+
real_random_noise = real_random_noise.type_as(real_images)
|
356 |
+
fake_images = self(real_random_noise)
|
357 |
+
|
358 |
+
# Pass fake images though discriminator
|
359 |
+
fake_preds = self.discriminator(fake_images)
|
360 |
+
fake_loss = self.criterion(fake_preds, torch.zeros_like(fake_preds))
|
361 |
+
|
362 |
+
# Update discriminator weights
|
363 |
+
loss = real_loss + fake_loss
|
364 |
+
self.log("d_loss", loss, on_step=False, on_epoch=True)
|
365 |
+
|
366 |
+
tqdm_dict = {"d_loss": loss}
|
367 |
+
output = OrderedDict({"loss": loss, "progress_bar": tqdm_dict, "log": tqdm_dict})
|
368 |
+
return output
|