DocuGAN / main.py
Thomas.Chaigneau
init main app
3234a40
raw
history blame
952 Bytes
import gradio as gr
import torch
import torchvision.transforms as T
from model import DocuGAN
chk_path = "best_model.ckpt"
model = DocuGAN(hidden_size=64, num_channel=1, latent_size=128, batch_size=128)
# model = DocuGAN.load_from_checkpoint(chk_path, strict=False)
model.eval()
transform = T.ToPILImage()
def fn(seed: int = 42):
torch.manual_seed(seed)
noise = torch.randn(1, 128, 1, 1)
with torch.no_grad():
pred = model(noise)
img = transform(pred.squeeze(1))
return img
gr.Interface(
fn,
inputs=[
gr.inputs.Slider(minimum=0, maximum=999999999, step=1, default=298422436, label='Random Seed')
],
outputs='image',
examples=[],
enable_queue=True,
title="DocuGAN",
description="Select random seed and click on Submit to generate a new Document",
article="DocuGAN, Document Generator by ChainYo",
css=".panel { padding: 5px } .moflo-link { color: #999 }"
).launch()