Spaces:
Runtime error
Runtime error
File size: 9,788 Bytes
2e4274a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# ###########################################################################
#
# CLOUDERA APPLIED MACHINE LEARNING PROTOTYPE (AMP)
# (C) Cloudera, Inc. 2022
# All rights reserved.
#
# Applicable Open Source License: Apache 2.0
#
# NOTE: Cloudera open source products are modular software products
# made up of hundreds of individual components, each of which was
# individually copyrighted. Each Cloudera open source product is a
# collective work under U.S. Copyright Law. Your license to use the
# collective work is as provided in your written agreement with
# Cloudera. Used apart from the collective work, this file is
# licensed for your use pursuant to the open source license
# identified above.
#
# This code is provided to you pursuant a written agreement with
# (i) Cloudera, Inc. or (ii) a third-party authorized to distribute
# this code. If you do not have a written agreement with Cloudera nor
# with an authorized and properly licensed third party, you do not
# have any rights to access nor to use this code.
#
# Absent a written agreement with Cloudera, Inc. (βClouderaβ) to the
# contrary, A) CLOUDERA PROVIDES THIS CODE TO YOU WITHOUT WARRANTIES OF ANY
# KIND; (B) CLOUDERA DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED
# WARRANTIES WITH RESPECT TO THIS CODE, INCLUDING BUT NOT LIMITED TO
# IMPLIED WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE; (C) CLOUDERA IS NOT LIABLE TO YOU,
# AND WILL NOT DEFEND, INDEMNIFY, NOR HOLD YOU HARMLESS FOR ANY CLAIMS
# ARISING FROM OR RELATED TO THE CODE; AND (D)WITH RESPECT TO YOUR EXERCISE
# OF ANY RIGHTS GRANTED TO YOU FOR THE CODE, CLOUDERA IS NOT LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR
# CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES
# RELATED TO LOST REVENUE, LOST PROFITS, LOSS OF INCOME, LOSS OF
# BUSINESS ADVANTAGE OR UNAVAILABILITY, OR LOSS OR CORRUPTION OF
# DATA.
#
# ###########################################################################
from typing import List, Union
import torch
import numpy as np
from pyemd import emd
from transformers import pipeline
class StyleIntensityClassifier:
"""
Utility for classifying style and calculating Style Transfer Intensity between
two pieces of text (i.e. input and output of TST model).
This custom evaluation metric aims to quantify the magnitude of transferred
style between two texts. To accomplish this, we pass input and output texts
through a trained style classifier to produce two distributions. We then
utilize Earth Movers Distance (EMD) to calculate the minimum "cost"/"work"
required to turn the input distribution into the output distribution. This
metric allows us to capture a more nuanced, per-example measure of style
transfer when compared to simply aggregating binary classifications over
records in a dataset.
Attributes:
model_identifier (str)
"""
def __init__(self, model_identifier: str):
self.model_identifier = model_identifier
self.device = torch.cuda.current_device() if torch.cuda.is_available() else -1
self._build_pipeline()
def _build_pipeline(self):
self.pipeline = pipeline(
task="text-classification",
model=self.model_identifier,
device=self.device,
return_all_scores=True,
)
def score(self, input_text: Union[str, List[str]]):
"""
Classify a given input text using the model initialized by the class.
Args:
input_text (`str` or `List[str]`) - Input text for classification
Returns:
classification (dict) - a dictionary containing the label, score, and
distribution between classes
"""
if isinstance(input_text, str):
tmp = list()
tmp.append(input_text)
input_text = tmp
result = self.pipeline(input_text)
distributions = np.array(
[[label["score"] for label in item] for item in result]
)
return [
{
"label": self.pipeline.model.config.id2label[scores.argmax()],
"score": round(scores.max(), 4),
"distribution": scores.tolist(),
}
for scores in distributions
]
def calculate_transfer_intensity(
self, input_text: List[str], output_text: List[str], target_class_idx: int = 1
) -> List[float]:
"""
Calcualates the style transfer intensity (STI) between two pieces of text.
Args:
input_text (list) - list of input texts with indicies corresponding
to counterpart in output_text
ouptput_text (list) - list of output texts with indicies corresponding
to counterpart in input_text
target_class_idx (int) - index of the target style class used for directional
score correction
Returns:
A list of floats with corresponding style transfer intensity scores.
"""
if len(input_text) != len(output_text):
raise ValueError(
"input_text and output_text must be of same length with corresponding items"
)
input_dist = [item["distribution"] for item in self.score(input_text)]
output_dist = [item["distribution"] for item in self.score(output_text)]
return [
self.calculate_emd(input_dist[i], output_dist[i], target_class_idx)
for i in range(len(input_dist))
]
def calculate_transfer_intensity_fraction(
self, input_text: List[str], output_text: List[str], target_class_idx: int = 1
) -> List[float]:
"""
Calcualates the style transfer intensity (STI) _fraction_ between two pieces of text.
See `calcualte_sti_fraction()` for details.
Args:
input_text (list) - list of input texts with indicies corresponding
to counterpart in output_text
ouptput_text (list) - list of output texts with indicies corresponding
to counterpart in input_text
target_class_idx (int) - index of the target style class used for directional
score correction
Returns:
A list of floats with corresponding style transfer intensity scores.
"""
if len(input_text) != len(output_text):
raise ValueError(
"input_text and output_text must be of same length with corresponding items"
)
input_dist = [item["distribution"] for item in self.score(input_text)]
output_dist = [item["distribution"] for item in self.score(output_text)]
return [
self.calculate_sti_fraction(
input_dist[i],
output_dist[i],
ideal_dist=[0.0, 1.0],
target_class_idx=target_class_idx,
)
for i in range(len(input_dist))
]
def calculate_sti_fraction(
self, input_dist, output_dist, ideal_dist=[0.0, 1.0], target_class_idx=1
):
"""
Calculate the direction-corrected style transfer intensity fraction between
two style distributions of equal length.
If output_dist moves closer towards target style class, the metric represents the percentage of
the possible _target_ style distribution that was captured during the transfer. If output_dist
moves further from the target style class, the metric represents the percentage of the possible
_source_ style distribution that was captured.
Args:
input_dist (list) - probabilities assigned to the style classes
from the input text to style transfer model
output_dist (list) - probabilities assigned to the style classes
from the outut text of the style transfer model
ideal_dist (list, optional): The maximum possibly distribution. Defaults to [0.0, 1.0].
target_class_idx (int, optional)
Returns:
sti_fraction (float)
"""
sti = self.calculate_emd(input_dist, output_dist, target_class_idx)
if sti > 0:
potential = self.calculate_emd(input_dist, ideal_dist, target_class_idx)
else:
potential = self.calculate_emd(
input_dist, ideal_dist[::-1], target_class_idx
)
return sti / potential
@staticmethod
def calculate_emd(input_dist, output_dist, target_class_idx):
"""
Calculate the direction-corrected Earth Mover's Distance (aka Wasserstein distance)
between two distributions of equal length. Here we penalize the EMD score if
the output text style moved further away from the target style.
Reference: https://github.com/passeul/style-transfer-model-evaluation/blob/master/code/style_transfer_intensity.py
Args:
input_dist (list) - probabilities assigned to the style classes
from the input text to style transfer model
output_dist (list) - probabilities assigned to the style classes
from the outut text of the style transfer model
Returns:
emd (float) - Earth Movers Distance between the two distributions
"""
N = len(input_dist)
distance_matrix = np.ones((N, N))
dist = emd(np.array(input_dist), np.array(output_dist), distance_matrix)
transfer_direction_correction = (
1 if output_dist[target_class_idx] >= input_dist[target_class_idx] else -1
)
return round(dist * transfer_direction_correction, 4)
|