File size: 14,085 Bytes
2e4274a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
# ###########################################################################
#
#  CLOUDERA APPLIED MACHINE LEARNING PROTOTYPE (AMP)
#  (C) Cloudera, Inc. 2022
#  All rights reserved.
#
#  Applicable Open Source License: Apache 2.0
#
#  NOTE: Cloudera open source products are modular software products
#  made up of hundreds of individual components, each of which was
#  individually copyrighted.  Each Cloudera open source product is a
#  collective work under U.S. Copyright Law. Your license to use the
#  collective work is as provided in your written agreement with
#  Cloudera.  Used apart from the collective work, this file is
#  licensed for your use pursuant to the open source license
#  identified above.
#
#  This code is provided to you pursuant a written agreement with
#  (i) Cloudera, Inc. or (ii) a third-party authorized to distribute
#  this code. If you do not have a written agreement with Cloudera nor
#  with an authorized and properly licensed third party, you do not
#  have any rights to access nor to use this code.
#
#  Absent a written agreement with Cloudera, Inc. (β€œCloudera”) to the
#  contrary, A) CLOUDERA PROVIDES THIS CODE TO YOU WITHOUT WARRANTIES OF ANY
#  KIND; (B) CLOUDERA DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED
#  WARRANTIES WITH RESPECT TO THIS CODE, INCLUDING BUT NOT LIMITED TO
#  IMPLIED WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND
#  FITNESS FOR A PARTICULAR PURPOSE; (C) CLOUDERA IS NOT LIABLE TO YOU,
#  AND WILL NOT DEFEND, INDEMNIFY, NOR HOLD YOU HARMLESS FOR ANY CLAIMS
#  ARISING FROM OR RELATED TO THE CODE; AND (D)WITH RESPECT TO YOUR EXERCISE
#  OF ANY RIGHTS GRANTED TO YOU FOR THE CODE, CLOUDERA IS NOT LIABLE FOR ANY
#  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR
#  CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES
#  RELATED TO LOST REVENUE, LOST PROFITS, LOSS OF INCOME, LOSS OF
#  BUSINESS ADVANTAGE OR UNAVAILABILITY, OR LOSS OR CORRUPTION OF
#  DATA.
#
# ###########################################################################

from typing import List

import torch
import pandas as pd
from transformers import (
    AutoTokenizer,
    AutoModel,
    AutoModelForSequenceClassification,
)


class ContentPreservationScorer:
    """
    Utility for calculating Content Preservation Score between
    two pieces of text (i.e. input and output of TST model).

    This custom evaluation metric aims to quantify content preservation by
    first modifying text to remove all style-related tokens leaving just
    content related tokens behind. Style tokens are determind on a
    sentence-by-sentence basis by extracting out salient token attributions
    from a trained Style Classifier (BERT) so contextual information is
    perserved in the attribution scores. Style tokens are then masked/removed
    from the text. We pass the style-less sentences through a pre-trained,
    but not fine-tuned SentenceBert model to compute sentence embeddings.
    Cosine similarity on the embeddings produces a score that should represent
    content preservation.

    PSUEDO-CODE: (higher score is better preservation)
    1. mask out style tokens for input and output text (1str)
    2. get SBERT embedddings for each (multi)
    3. calculate cosine similarity (multi pairs)

    Attributes:
        cls_model_identifier (str)
        sbert_model_identifier (str)

    """

    def __init__(self, cls_model_identifier: str, sbert_model_identifier: str):

        self.cls_model_identifier = cls_model_identifier
        self.sbert_model_identifier = sbert_model_identifier
        self.device = (
            torch.cuda.current_device() if torch.cuda.is_available() else "cpu"
        )

        self._initialize_hf_artifacts()

    def _initialize_hf_artifacts(self):
        """
        Initialize a HuggingFace artifacts (tokenizer and model) according
        to the provided identifiers for both SBert and the classification model.
        Then initialize the word attribution explainer with the HF model+tokenizer.

        """

        # sbert
        self.sbert_tokenizer = AutoTokenizer.from_pretrained(
            self.sbert_model_identifier
        )
        self.sbert_model = AutoModel.from_pretrained(self.sbert_model_identifier)

        # classifer
        self.cls_tokenizer = AutoTokenizer.from_pretrained(self.cls_model_identifier)
        self.cls_model = AutoModelForSequenceClassification.from_pretrained(
            self.cls_model_identifier
        )
        self.cls_model.to(self.device)

    def compute_sentence_embeddings(self, input_text: List[str]) -> torch.Tensor:
        """
        Compute sentence embeddings for each sentence provided a list of text strings.

        Args:
            input_text (List[str]) - list of input sentences to encode

        Returns:
            sentence_embeddings (torch.Tensor)

        """
        # tokenize sentences
        encoded_input = self.sbert_tokenizer(
            input_text,
            padding=True,
            truncation=True,
            max_length=256,
            return_tensors="pt",
        )

        # to device
        self.sbert_model.eval()
        self.sbert_model.to(self.device)
        encoded_input = {k: v.to(self.device) for k, v in encoded_input.items()}

        # compute token embeddings
        with torch.no_grad():
            model_output = self.sbert_model(**encoded_input)

        return (
            self.mean_pooling(model_output, encoded_input["attention_mask"])
            .detach()
            .cpu()
        )

    def calculate_content_preservation_score(
        self,
        input_text: List[str],
        output_text: List[str],
        threshold: float = 0.3,
        mask_type: str = "pad",
        return_all: bool = False,
    ) -> List[float]:
        """
        Calcualates the content preservation score (CPS) between two pieces of text.

        Args:
            input_text (list) - list of input texts with indicies corresponding
                to counterpart in output_text
            ouptput_text (list) - list of output texts with indicies corresponding
                to counterpart in input_text
            return_all (bool) - If true, return dict containing intermediate
                text with style masking applied, along with scores
            mask_type (str) - "pad", "remove", or "none"

        Returns:
            A list of floats with corresponding content preservation scores.

        PSUEDO-CODE: (higher score is better preservation)
            1. mask out style tokens for input and output text (1str)
            2. get SBERT embedddings for each (multi)
            3. calculate cosine similarity (multi pairs)
        """
        if len(input_text) != len(output_text):
            raise ValueError(
                "input_text and output_text must be of same length with corresponding items"
            )

        if mask_type != "none":
            # Mask out style tokens
            masked_input_text = [
                self.mask_style_tokens(text, mask_type=mask_type, threshold=threshold)
                for text in input_text
            ]
            masked_output_text = [
                self.mask_style_tokens(text, mask_type=mask_type, threshold=threshold)
                for text in output_text
            ]

            # Compute SBert embeddings
            input_embeddings = self.compute_sentence_embeddings(masked_input_text)
            output_embeddings = self.compute_sentence_embeddings(masked_output_text)
        else:
            # Compute SBert embeddings on unmasked text
            input_embeddings = self.compute_sentence_embeddings(input_text)
            output_embeddings = self.compute_sentence_embeddings(output_text)

        # Calculate cosine similarity
        scores = self.cosine_similarity(input_embeddings, output_embeddings)

        if return_all:
            output = {
                "scores": scores,
                "masked_input_text": masked_input_text
                if mask_type != "none"
                else input_text,
                "masked_output_text": masked_output_text
                if mask_type != "none"
                else output_text,
            }
            return output
        else:
            return scores

    def calculate_feature_attribution_scores(
        self, text: str, class_index: int = 0, as_norm: bool = False
    ) -> List[tuple]:
        """
        Calcualte feature attributions using integrated gradients by passing
        a string of text as input.

        Args:
            text (str) - text to get attributions for
            class_index (int) - Optional output index to provide attributions for

        """
        attributions = self.explainer(text, index=class_index)

        if as_norm:
            return self.format_feature_attribution_scores(attributions)

        return attributions

    def mask_style_tokens(
        self,
        text: str,
        threshold: float = 0.3,
        mask_type: str = "pad",
        class_index: int = 0,
    ) -> str:
        """
        Utility function to mask out style tokens from a given string of text.

        Style tokens are determined by first calculating feature importances (via
        word attributions from trained StyleClassifer) for each token in the input sentence.
        We then normalize the absolute values of attributions scores to see how much each token
        contributes as a percentage overall style classification and rank those in descending order.

        We then select the top N tokens that account for the cumulative _threshold_ amount (%) of
        total styleattribution. By using cumulative percentages, N is not a fixed number and we
        ultimately take however many tokens are needed to account for _threshold_ % of the overall
        style.

        We can optionally return a string with these style tokens padded out or completely removed
        by toggling _mask_type_ between "pad" and "remove".

        Args:
            text (str)
            threshold (float) - percentage of style attribution as cutoff for masking selection.
            mask_type (str) - "pad" or "remove", indicates how to handle style tokens
            class_index (str)

        Returns:
            text (str)

        """

        # get attributions and format as sorted dataframe
        attributions = self.calculate_feature_attribution_scores(
            text, class_index=class_index, as_norm=False
        )
        attributions_df = self.format_feature_attribution_scores(attributions)

        # select tokens to mask
        token_idxs_to_mask = []

        # If the first token accounts for more than the set
        # threshold, take just that token to mask. Otherwise,
        # take all tokens up to the threshold
        if attributions_df.iloc[0]["cumulative"] > threshold:
            token_idxs_to_mask.append(attributions_df.index[0])
        else:
            token_idxs_to_mask.extend(
                attributions_df[
                    attributions_df["cumulative"] <= threshold
                ].index.to_list()
            )

        # Build text sequence with tokens masked out
        mask_map = {"pad": "[PAD]", "remove": ""}
        toks = [token for token, score in attributions]
        for idx in token_idxs_to_mask:
            toks[idx] = mask_map[mask_type]

        if mask_type == "remove":
            toks = [token for token in toks if token != ""]

        # Decode that sequence
        masked_text = self.explainer.tokenizer.decode(
            self.explainer.tokenizer.convert_tokens_to_ids(toks),
            skip_special_tokens=False,
        )

        # Remove special characters other than [PAD]
        for special_token in self.explainer.tokenizer.all_special_tokens:
            if special_token != "[PAD]":
                masked_text = masked_text.replace(special_token, "")

        return masked_text.strip()

    @staticmethod
    def format_feature_attribution_scores(attributions: List[tuple]) -> pd.DataFrame:
        """
        Utility for formatting attribution scores for style token mask selection

        Sorts a given List[tuple] where tuples represent (token, score) by the
        normalized absolute value of each token score.

        """

        df = pd.DataFrame(attributions, columns=["token", "score"])
        df["abs_norm"] = df["score"].abs() / df["score"].abs().sum()
        df = df.sort_values(by="abs_norm", ascending=False)
        df["cumulative"] = df["abs_norm"].cumsum()
        return df

    @staticmethod
    def cosine_similarity(tensor1: torch.Tensor, tensor2: torch.Tensor) -> List[float]:
        """
        Calculate cosine similarity on pairs of embedddings.

        Can handle 1D Tensor for single pair or 2D Tensors with corresponding indicies
        for matrix operation on multiple pairs.

        """

        assert tensor1.shape == tensor2.shape

        # ensure 2D tensor
        if tensor1.ndim == 1:
            tensor1 = tensor1.unsqueeze(0)
            tensor2 = tensor2.unsqueeze(0)

        cos_sim = torch.nn.CosineSimilarity(dim=1, eps=1e-6)
        return [round(val, 4) for val in cos_sim(tensor1, tensor2).tolist()]

    @staticmethod
    def mean_pooling(model_output, attention_mask):
        """
        Peform mean pooling over token embeddings to create sentence embedding. Here we take
        the attention mask into account for correct averaging on active token positions.

        CODE BORROWED FROM:
            https://www.sbert.net/examples/applications/computing-embeddings/README.html#sentence-embeddings-with-transformers

        """

        token_embeddings = model_output[
            0
        ]  # First element of model_output contains all token embeddings
        input_mask_expanded = (
            attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
        )
        sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
        sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)

        return sum_embeddings / sum_mask