Spaces:
Runtime error
Runtime error
File size: 5,864 Bytes
a00be78 7247642 e735a4c e8c1c43 a00be78 e915c68 a00be78 033af05 a00be78 13e0d1b 4ed656e e915c68 e8c1c43 13e0d1b e915c68 033af05 a00be78 13e0d1b 033af05 a00be78 033af05 e735a4c e8c1c43 e735a4c e8c1c43 a00be78 e915c68 13e0d1b e915c68 9fc2d21 e915c68 9fc2d21 e915c68 44cb622 13e0d1b a00be78 44cb622 a00be78 44cb622 a00be78 20998cb 7247642 e735a4c e8c1c43 4ec985f e8c1c43 7247642 4ec985f 20998cb 4ec985f 13e0d1b 91c3a02 13e0d1b e8c1c43 13e0d1b e8c1c43 e915c68 13e0d1b e915c68 13e0d1b 467c2a7 13e0d1b e915c68 7247642 91c3a02 467c2a7 e915c68 467c2a7 e8c1c43 9fc2d21 467c2a7 e8c1c43 467c2a7 91c3a02 467c2a7 91c3a02 e915c68 13e0d1b a00be78 13e0d1b a00be78 91c3a02 a00be78 13e0d1b 9fc2d21 e8c1c43 9fc2d21 a00be78 13e0d1b e915c68 a00be78 13e0d1b e915c68 a00be78 e735a4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from llama_cpp.llama_speculative import LlamaPromptLookupDecoding
from llama_cpp_cuda_tensorcores import Llama
from huggingface_hub import hf_hub_download
from huggingface_hub import HfApi
import matplotlib.pyplot as plt
from typing import Tuple, Optional
import pandas as pd
import gradio as gr
import duckdb
import requests
import instructor
import spaces
import enum
import os
from pydantic import BaseModel, Field
BASE_DATASETS_SERVER_URL = "/static-proxy?url=https%3A%2F%2Fdatasets-server.huggingface.co%26quot%3B%3C%2Fspan%3E
view_name = "dataset_view"
hf_api = HfApi()
conn = duckdb.connect()
gpu_layers = int(os.environ.get("GPU_LAYERS", 0))
draft_pred_tokens = int(os.environ.get("DRAFT_PRED_TOKENS", 2))
repo_id = os.getenv("MODEL_REPO_ID", "NousResearch/Hermes-2-Pro-Llama-3-8B-GGUF")
model_file_name = os.getenv("MODEL_FILE_NAME", "Hermes-2-Pro-Llama-3-8B-Q4_K_M.gguf")
hf_hub_download(
repo_id=repo_id,
filename=model_file_name,
local_dir="./models",
)
class OutputTypes(str, enum.Enum):
TABLE = "table"
BARCHART = "barchart"
LINECHART = "linechart"
class SQLResponse(BaseModel):
sql: str
visualization_type: Optional[OutputTypes] = Field(
None, description="The type of visualization to display"
)
data_key: Optional[str] = Field(
None,
description="The column name from the sql query that contains the data for chart responses",
)
label_key: Optional[str] = Field(
None,
description="The column name from the sql query that contains the labels for chart responses",
)
def get_dataset_ddl(dataset_id: str) -> str:
response = requests.get(f"{BASE_DATASETS_SERVER_URL}/parquet?dataset={dataset_id}")
response.raise_for_status() # Check if the request was successful
first_parquet = response.json().get("parquet_files", [])[0]
first_parquet_url = first_parquet.get("url")
if not first_parquet_url:
raise ValueError("No valid URL found for the first parquet file.")
conn.execute(
f"CREATE OR REPLACE VIEW {view_name} as SELECT * FROM read_parquet('{first_parquet_url}');"
)
dataset_ddl = conn.execute(f"PRAGMA table_info('{view_name}');").fetchall()
column_data_types = ",\n\t".join(
[f"{column[1]} {column[2]}" for column in dataset_ddl]
)
sql_ddl = """
CREATE TABLE {} (
{}
);
""".format(
view_name, column_data_types
)
return sql_ddl
@spaces.GPU(duration=120)
def generate_query(ddl: str, query: str) -> dict:
llama = Llama(
model_path=f"models/{model_file_name}",
n_gpu_layers=gpu_layers,
chat_format="chatml",
draft_model=LlamaPromptLookupDecoding(num_pred_tokens=draft_pred_tokens),
logits_all=True,
n_ctx=2048,
verbose=True,
temperature=0.1,
)
create = instructor.patch(
create=llama.create_chat_completion_openai_v1,
mode=instructor.Mode.JSON_SCHEMA,
)
system_prompt = f"""
You are an expert SQL assistant with access to the following PostgreSQL Table:
```sql
{ddl.strip()}
```
Please assist the user by writing a SQL query that answers the user's question.
"""
print("Calling LLM with system prompt: ", system_prompt, query)
resp: SQLResponse = create(
model="Hermes-2-Pro-Llama-3-8B",
messages=[
{"role": "system", "content": system_prompt},
{
"role": "user",
"content": query,
},
],
response_model=SQLResponse,
)
print("Received Response: ", resp)
return resp.model_dump()
def query_dataset(dataset_id: str, query: str) -> Tuple[pd.DataFrame, str, plt.Figure]:
ddl = get_dataset_ddl(dataset_id)
response = generate_query(ddl, query)
print("Querying Parquet...")
df = conn.execute(response.get("sql")).fetchdf()
plot = None
label_key = response.get("label_key")
data_key = response.get("data_key")
viz_type = response.get("visualization_type")
sql = response.get("sql")
markdown_output = f"""```sql\n{sql}\n```"""
# handle incorrect data and label keys
if label_key and label_key not in df.columns:
label_key = None
if data_key and data_key not in df.columns:
data_key = None
if df.empty:
return df, f"```sql\n{sql}\n```", plot
if viz_type == OutputTypes.LINECHART:
plot = df.plot(kind="line", x=label_key, y=data_key).get_figure()
plt.xticks(rotation=45, ha="right")
plt.tight_layout()
elif viz_type == OutputTypes.BARCHART:
plot = df.plot(kind="bar", x=label_key, y=data_key).get_figure()
plt.xticks(rotation=45, ha="right")
plt.tight_layout()
return df, markdown_output, plot
with gr.Blocks() as demo:
gr.Markdown("# Query your HF Datasets with Natural Language ππ")
dataset_id = HuggingfaceHubSearch(
label="Hub Dataset ID",
placeholder="Find your favorite dataset...",
search_type="dataset",
value="gretelai/synthetic_text_to_sql",
)
user_query = gr.Textbox("", label="Ask anything...")
examples = [
["Show me a preview of the data"],
["Show me something interesting"],
["Which row has longest description length?"],
["find the average length of sql query context"],
]
gr.Examples(examples=examples, inputs=[user_query], outputs=[])
btn = gr.Button("Ask πͺ")
sql_query = gr.Markdown(label="Output SQL Query")
df = gr.DataFrame()
plot = gr.Plot()
btn.click(
query_dataset,
inputs=[dataset_id, user_query],
outputs=[df, sql_query, plot],
)
if __name__ == "__main__":
demo.launch(
show_error=True,
quiet=False,
debug=True,
)
|