Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,48 +9,58 @@ from sklearn.model_selection import train_test_split
|
|
9 |
from sklearn.ensemble import RandomForestClassifier
|
10 |
from sklearn.metrics import accuracy_score
|
11 |
|
|
|
12 |
data = pd.read_csv('https://raw.githubusercontent.com/gradio-app/titanic/master/train.csv')
|
13 |
data.head()
|
14 |
|
15 |
-
|
16 |
-
|
|
|
17 |
bins = (-1, 0, 5, 12, 18, 25, 35, 60, 120)
|
18 |
-
categories = pd.cut(df
|
19 |
-
df.Age = categories
|
20 |
return df
|
21 |
|
22 |
-
|
23 |
-
|
|
|
24 |
bins = (-1, 0, 8, 15, 31, 1000)
|
25 |
-
categories = pd.cut(df
|
26 |
-
df.Fare = categories
|
27 |
return df
|
28 |
|
|
|
29 |
def encode_sex(df):
|
30 |
mapping = {"male": 0, "female": 1}
|
31 |
-
|
|
|
32 |
|
|
|
33 |
def transform_features(df):
|
34 |
df = encode_ages(df)
|
35 |
df = encode_fares(df)
|
36 |
df = encode_sex(df)
|
37 |
return df
|
38 |
|
|
|
39 |
train = data[['PassengerId', 'Fare', 'Age', 'Sex', 'Survived']]
|
40 |
train = transform_features(train)
|
41 |
train.head()
|
42 |
|
43 |
-
|
44 |
X_all = train.drop(['Survived', 'PassengerId'], axis=1)
|
45 |
y_all = train['Survived']
|
46 |
|
|
|
47 |
num_test = 0.20
|
48 |
X_train, X_test, y_train, y_test = train_test_split(X_all, y_all, test_size=num_test, random_state=23)
|
49 |
|
|
|
50 |
clf = RandomForestClassifier()
|
51 |
clf.fit(X_train, y_train)
|
52 |
predictions = clf.predict(X_test)
|
53 |
|
|
|
54 |
def predict_survival(sex, age, fare):
|
55 |
df = pd.DataFrame.from_dict({'Sex': [sex], 'Age': [age], 'Fare': [fare]})
|
56 |
df = encode_sex(df)
|
@@ -59,9 +69,10 @@ def predict_survival(sex, age, fare):
|
|
59 |
pred = clf.predict_proba(df)[0]
|
60 |
return {'Perishes': float(pred[0]), 'Survives': float(pred[1])}
|
61 |
|
|
|
62 |
sex = gr.Radio(['female', 'male'], label="Sex", value="male")
|
63 |
-
age = gr.Slider(minimum=0, maximum=100,
|
64 |
-
fare = gr.Slider(minimum=0, maximum=200,
|
65 |
|
66 |
gr.Interface(predict_survival, [sex, age, fare], "label", live=True, thumbnail="https://raw.githubusercontent.com/gradio-app/hub-titanic/master/thumbnail.png", analytics_enabled=False,
|
67 |
-
theme="soft", title="Demo Titanic", description="
|
|
|
9 |
from sklearn.ensemble import RandomForestClassifier
|
10 |
from sklearn.metrics import accuracy_score
|
11 |
|
12 |
+
# Cargar los datos
|
13 |
data = pd.read_csv('https://raw.githubusercontent.com/gradio-app/titanic/master/train.csv')
|
14 |
data.head()
|
15 |
|
16 |
+
# Funci贸n para binning de edades
|
17 |
+
def encode_ages(df):
|
18 |
+
df.loc[:, 'Age'] = df['Age'].fillna(-0.5)
|
19 |
bins = (-1, 0, 5, 12, 18, 25, 35, 60, 120)
|
20 |
+
categories = pd.cut(df['Age'], bins, labels=False)
|
21 |
+
df.loc[:, 'Age'] = categories
|
22 |
return df
|
23 |
|
24 |
+
# Funci贸n para binning de tarifas
|
25 |
+
def encode_fares(df):
|
26 |
+
df.loc[:, 'Fare'] = df['Fare'].fillna(-0.5)
|
27 |
bins = (-1, 0, 8, 15, 31, 1000)
|
28 |
+
categories = pd.cut(df['Fare'], bins, labels=False)
|
29 |
+
df.loc[:, 'Fare'] = categories
|
30 |
return df
|
31 |
|
32 |
+
# Funci贸n para codificar el sexo
|
33 |
def encode_sex(df):
|
34 |
mapping = {"male": 0, "female": 1}
|
35 |
+
df.loc[:, 'Sex'] = df['Sex'].map(mapping)
|
36 |
+
return df
|
37 |
|
38 |
+
# Funci贸n para transformar todas las caracter铆sticas
|
39 |
def transform_features(df):
|
40 |
df = encode_ages(df)
|
41 |
df = encode_fares(df)
|
42 |
df = encode_sex(df)
|
43 |
return df
|
44 |
|
45 |
+
# Selecci贸n de columnas y transformaci贸n de datos
|
46 |
train = data[['PassengerId', 'Fare', 'Age', 'Sex', 'Survived']]
|
47 |
train = transform_features(train)
|
48 |
train.head()
|
49 |
|
50 |
+
# Separaci贸n en caracter铆sticas (X) y etiqueta (y)
|
51 |
X_all = train.drop(['Survived', 'PassengerId'], axis=1)
|
52 |
y_all = train['Survived']
|
53 |
|
54 |
+
# Divisi贸n en conjunto de entrenamiento y prueba
|
55 |
num_test = 0.20
|
56 |
X_train, X_test, y_train, y_test = train_test_split(X_all, y_all, test_size=num_test, random_state=23)
|
57 |
|
58 |
+
# Entrenamiento del modelo
|
59 |
clf = RandomForestClassifier()
|
60 |
clf.fit(X_train, y_train)
|
61 |
predictions = clf.predict(X_test)
|
62 |
|
63 |
+
# Funci贸n de predicci贸n para Gradio
|
64 |
def predict_survival(sex, age, fare):
|
65 |
df = pd.DataFrame.from_dict({'Sex': [sex], 'Age': [age], 'Fare': [fare]})
|
66 |
df = encode_sex(df)
|
|
|
69 |
pred = clf.predict_proba(df)[0]
|
70 |
return {'Perishes': float(pred[0]), 'Survives': float(pred[1])}
|
71 |
|
72 |
+
# Definir la interfaz de Gradio
|
73 |
sex = gr.Radio(['female', 'male'], label="Sex", value="male")
|
74 |
+
age = gr.Slider(minimum=0, maximum=100, value=22, label="Age")
|
75 |
+
fare = gr.Slider(minimum=0, maximum=200, value=100, label="Fare (british pounds)")
|
76 |
|
77 |
gr.Interface(predict_survival, [sex, age, fare], "label", live=True, thumbnail="https://raw.githubusercontent.com/gradio-app/hub-titanic/master/thumbnail.png", analytics_enabled=False,
|
78 |
+
theme="soft", title="Demo Titanic", description="驴Cu谩l es la probabilidad de que un pasajero sobreviva?").launch();
|