import streamlit as st import pandas as pd import torch from chronos import ChronosPipeline import matplotlib.pyplot as plt import numpy as np # Load the Chronos Pipeline model @st.cache_resource def load_pipeline(): pipeline = ChronosPipeline.from_pretrained( "amazon/chronos-t5-small", device_map="cpu", # Change to CPU torch_dtype=torch.float32, # Use float32 for CPU ) return pipeline pipeline = load_pipeline() # Streamlit app interface st.title("Time Series Forecasting Demo with Deep Learning models") st.write("This demo uses the ChronosPipeline model for time series forecasting.") # Default time series data (comma-separated) default_data = """ 112, 118, 132, 129, 121, 135, 148, 148, 136, 119, 104, 118, 115, 126, 141, 135, 125, 149, 170, 170, 158, 133, 114, 140, 145, 150, 178, 163, 172, 178, 199, 199, 184, 162, 146, 166, 171, 180, 193, 181, 183, 218, 230, 242, 209, 191, 172, 194, 196, 196, 236, 235, 229, 243, 264, 272, 237, 211, 180, 201, 204, 188, 235, 227, 234, 264, 302, 293, 259, 229, 203, 229, 242, 233, 267, 269, 270, 315, 364, 347, 312, 274, 237, 278, 284, 277, 317, 313, 318, 374, 413, 405, 355, 306, 271, 306, 315, 301, 356, 348, 355, 422, 465, 467, 404, 347, 305, 336, 340, 318, 362, 348, 363, 435, 491, 505, 404, 359, 310, 337, 360, 342, 406, 396, 420, 472, 548, 559, 463, 407, 362, 405, 417, 391, 419, 461, 472, 535, 622, 606, 508, 461, 390, 432 """ # Input field for user-provided data user_input = st.text_area( "Enter time series data (comma-separated values):", default_data.strip() ) # Convert user input into a list of numbers def process_input(input_str): return [float(x.strip()) for x in input_str.split(",")] try: time_series_data = process_input(user_input) except ValueError: st.error("Please make sure all values are numbers, separated by commas.") time_series_data = [] # Set empty data on error to prevent further processing # Select the number of months for forecasting prediction_length = st.slider("Select Forecast Horizon (Months)", min_value=1, max_value=64, value=12) # If data is valid, perform the forecast if time_series_data: # Convert the data to a tensor context = torch.tensor(time_series_data, dtype=torch.float32) # Make the forecast forecast = pipeline.predict( context=context, prediction_length=prediction_length, num_samples=20, ) # Prepare forecast data for plotting forecast_index = range(len(time_series_data), len(time_series_data) + prediction_length) low, median, high = np.quantile(forecast[0].numpy(), [0.1, 0.5, 0.9], axis=0) # Plot the historical and forecasted data plt.figure(figsize=(8, 4)) plt.plot(time_series_data, color="royalblue", label="Historical data") plt.plot(forecast_index, median, color="tomato", label="Median forecast") plt.fill_between(forecast_index, low, high, color="tomato", alpha=0.3, label="80% prediction interval") plt.legend() plt.grid() # Show the plot in the Streamlit app st.pyplot(plt)