import requests from bs4 import BeautifulSoup from cleantext import clean import pandas as pd import numpy as np onet = pd.read_csv('static/ONET_JobTitles.csv') headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2 Safari/605.1.15'} def remove_new_line(value): return ''.join(value.splitlines()) def get_onet_code(jobtitle): onetCode = onet.loc[onet['JobTitle'] == jobtitle, 'onetCode'] onetCode = onetCode.reindex().tolist()[0] return onetCode def get_onet_description(onetCode): url = "https://www.onetonline.org/link/summary/" + onetCode response = requests.get(url, headers=headers, verify=False) soup = BeautifulSoup(response.text, 'html.parser') jobdescription = soup.p.get_text() return jobdescription def get_onet_tasks(onetCode): headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2 Safari/605.1.15'} url = "https://www.onetonline.org/link/result/" + onetCode + "?c=tk&n_tk=0&s_tk=IM&c_tk=0" response = requests.get(url, headers=headers, verify=False) soup = BeautifulSoup(response.text, 'html.parser') tasks = str(soup.get_text('reportsubdesc')).replace("reportsubdesc", " ").replace("ImportanceCategoryTask ", "") tasks = clean(tasks) if len(tasks.split('show all show top 10')) > 1: tasks = tasks.split('show all show top 10')[1] tasks = tasks.split('occupations related to multiple tasks')[0] tasks = remove_new_line(tasks).replace("related occupations", " ").replace("core", " - ").replace("supplemental", "").replace("not available", "").replace(" )importance category task", "").replace(" find ", "") tasks = tasks.split(". ") tasks = [''.join(map(lambda c: '' if c in '0123456789-' else c, task)) for task in tasks] return tasks else: return pd.DataFrame([("We're sorry."), ("This occupation is currently undergoing updates."), ("Please try again later.")]) def get_onet_activities(onetCode): headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2 Safari/605.1.15'} activities_url = "https://www.onetonline.org/link/result/" + onetCode + "?c=wa&n_wa=0&s_wa=IM&c_wa=0" response = requests.get(activities_url, headers=headers, verify=False) soup = BeautifulSoup(response.text, 'html.parser') tasks = str(soup.get_text('reportsubdesc')).replace("reportsubdesc", " ").replace("ImportanceCategoryTask ", "") tasks = clean(tasks) if len(tasks.split('show all show top 10')) > 1: tasks = tasks.split('show all show top 10')[1] tasks = tasks.split('back to top')[0] tasks = remove_new_line(tasks).replace("related occupations", " ").replace("importance work activity", " ") tasks = tasks.split(". ") split_data = [item.split(" -- ")[0] for item in tasks] num_desc = [] for i in range(len(tasks)): temp = [','.join(item) for item in split_data][i].split(',') num_desc.append([''.join([c for c in temp if c in '0123456789']), ''.join([c for c in temp if c not in '0123456789']).replace(' ) ', '')]) df = pd.DataFrame(num_desc, columns = ['Importance', 'Activity']) df = df[df['Importance'] != ''] activities = df return activities else: return pd.DataFrame([("We're sorry."), ("This occupation is currently undergoing updates."), ("Please try again later.")]) def get_onet_context(onetCode): headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2 Safari/605.1.15'} context_url = "https://www.onetonline.org/link/result/" + onetCode + "?c=cx&n_cx=0&c_cx=0&s_cx=n" response = requests.get(context_url, headers=headers, verify=False) soup = BeautifulSoup(response.text, 'html.parser') tasks = str(soup.get_text('reportsubdesc')).replace("reportsubdesc", " ").replace("ImportanceCategoryTask ", "") tasks = clean(tasks) if len(tasks.split('show all show top 10')) > 1: tasks = tasks.split('show all show top 10')[1] tasks = tasks.split('back to top')[0] tasks = remove_new_line(tasks).replace("related occupations", " ").replace("importance work activity", " ") tasks = tasks.split("? ") split_data = [item.split(" -- ")[0] for item in tasks] num_desc = [] for i in range(len(tasks)): temp = [','.join(item) for item in split_data][i].split(',') num_desc.append([''.join([c for c in temp if c in '0123456789']), ''.join([c for c in temp if c not in '0123456789']).replace(')context work context', '')]) df2 = pd.DataFrame(num_desc, columns = ['Importance', 'Condition']) df2 = df2[df2['Importance'] != ''] context = df2 if len(context.index) < 5: context_url = "https://www.onetonline.org/link/result/" + onetCode + "?c=wc&n_wc=0&c_wc=0" response = requests.get(context_url, headers=headers, verify=False) soup = BeautifulSoup(response.text, 'html.parser') tasks = str(soup.get_text('reportsubdesc')).replace("reportsubdesc", " ").replace("ImportanceCategoryTask ", "") tasks = clean(tasks) if len(tasks.split('show all show top 10')) > 1: tasks = tasks.split('show all show top 10')[1] tasks = tasks.split('back to top')[0] tasks = remove_new_line(tasks).replace("related occupations", " ").replace("importance work activity", " ") tasks = tasks.split("? ") split_data = [item.split(" -- ")[0] for item in tasks] num_desc = [] for i in range(len(tasks)): temp = [','.join(item) for item in split_data][i].split(',') num_desc.append([''.join([c for c in temp if c in '0123456789']), ''.join([c for c in temp if c not in '0123456789']).replace(')context work context', '')]) df2 = pd.DataFrame(num_desc, columns = ['Importance', 'Condition']) df2 = df2[df2['Importance'] != ''] context = df2 return context else: return pd.DataFrame([("We're sorry."), ("This occupation is currently undergoing updates."), ("Please try again later.")]) def get_onet_skills(onetCode): headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2 Safari/605.1.15'} skills_url = "https://www.onetonline.org/link/result/" + onetCode + "?c=sk&n_sk=0&s_sk=IM&c_sk=0" response = requests.get(skills_url, headers=headers, verify=False) soup = BeautifulSoup(response.text, 'html.parser') tasks = str(soup.get_text('reportsubdesc')).replace("reportsubdesc", " ").replace("ImportanceCategoryTask ", "") tasks = clean(tasks) if len(tasks.split('show all show top 10')) > 1: tasks = tasks.split('show all show top 10')[1] tasks = tasks.split('back to top')[0] tasks = remove_new_line(tasks).replace("related occupations", " ").replace(")importance skill", " ") tasks = tasks.split(". ") split_data = [item.split(" -- ")[0] for item in tasks] num_desc = [] for i in range(len(tasks)): temp = [','.join(item) for item in split_data][i].split(',') num_desc.append([''.join([c for c in temp if c in '0123456789']), ''.join([c for c in temp if c not in '0123456789']).replace(')context work context', '')]) df3 = pd.DataFrame(num_desc, columns = ['Importance', 'Skill']) df3 = df3[df3['Importance'] != ''] skills = df3 return skills else: return pd.DataFrame([("We're sorry."), ("This occupation is currently undergoing updates."), ("Please try again later.")]) def get_onet_knowledge(onetCode): headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2 Safari/605.1.15'} knowledge_url = "https://www.onetonline.org/link/result/" + onetCode + "?c=kn&n_kn=0&s_kn=IM&c_kn=0" response = requests.get(knowledge_url, headers=headers, verify=False) soup = BeautifulSoup(response.text, 'html.parser') tasks = str(soup.get_text('reportsubdesc')).replace("reportsubdesc", " ").replace("ImportanceCategoryTask ", "") tasks = clean(tasks) if len(tasks.split('show all show top 10')) > 1: tasks = tasks.split('show all show top 10')[1] tasks = tasks.split('back to top')[0] tasks = remove_new_line(tasks).replace("related occupations", " ").replace(")importance knowledge", " ") tasks = tasks.split(". ") split_data = [item.split(" -- ")[0] for item in tasks] num_desc = [] for i in range(len(tasks)): temp = [','.join(item) for item in split_data][i].split(',') num_desc.append([''.join([c for c in temp if c in '0123456789']), ''.join([c for c in temp if c not in '0123456789']).replace(')context work context', '')]) df4 = pd.DataFrame(num_desc, columns = ['Importance', 'Knowledge']) df4 = df4[df4['Importance'] != ''] knowledge = df4 return knowledge else: return pd.DataFrame([("We're sorry."), ("This occupation is currently undergoing updates."), ("Please try again later.")]) def get_onet_abilities(onetCode): headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2 Safari/605.1.15'} abilities_url = "https://www.onetonline.org/link/result/" + onetCode + "?c=ab&n_ab=0&s_ab=IM&c_ab=0" response = requests.get(abilities_url, headers=headers, verify=False) soup = BeautifulSoup(response.text, 'html.parser') tasks = str(soup.get_text('reportsubdesc')).replace("reportsubdesc", " ").replace("ImportanceCategoryTask ", "") tasks = clean(tasks) if len(tasks.split('show all show top 10')) > 1: tasks = tasks.split('show all show top 10')[1] tasks = tasks.split('back to top')[0] tasks = remove_new_line(tasks).replace("related occupations", " ").replace(")importance ability", " ") tasks = tasks.split(". ") split_data = [item.split(" -- ")[0] for item in tasks] num_desc = [] for i in range(len(tasks)): temp = [','.join(item) for item in split_data][i].split(',') num_desc.append([''.join([c for c in temp if c in '0123456789']), ''.join([c for c in temp if c not in '0123456789']).replace(')context work context', '')]) df5 = pd.DataFrame(num_desc, columns = ['Importance', 'Ability']) df5 = df5[df5['Importance'] != ''] abilities = df5 return abilities else: return pd.DataFrame([("We're sorry."), ("This occupation is currently undergoing updates."), ("Please try again later.")]) def get_onet_interests(onetCode): headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2 Safari/605.1.15'} interests_url = "https://www.onetonline.org/link/result/" + onetCode + "?c=in&c_in=0" response = requests.get(interests_url, headers=headers, verify=False) soup = BeautifulSoup(response.text, 'html.parser') tasks = str(soup.get_text('reportsubdesc')).replace("reportsubdesc", " ").replace("ImportanceCategoryTask ", "") tasks = clean(tasks) tasks = tasks.split("occupational interest interest")[1]#.replace('bright outlook', '').replace('updated 2023', '') if len(tasks.split('back to top')) > 1: tasks = tasks.split('back to top')[0] tasks = remove_new_line(tasks).replace("related occupations", " ").replace(")importance interest", " ") tasks = tasks.split(". ") split_data = [item.split(" -- ")[0] for item in tasks] num_desc = [] for i in range(len(tasks)): temp = [','.join(item) for item in split_data][i].split(',') num_desc.append([''.join([c for c in temp if c in '0123456789']), ''.join([c for c in temp if c not in '0123456789']).replace(')context work context', '')]) df6 = pd.DataFrame(num_desc, columns = ['Importance', 'Interest']) df6 = df6[df6['Importance'] != ''] interests = df6 return interests else: return pd.DataFrame([("We're sorry."), ("This occupation is currently undergoing updates."), ("Please try again later.")]) def get_onet_values(onetCode): headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2 Safari/605.1.15'} values_url = "https://www.onetonline.org/link/result/" + onetCode + "?c=wv&c_wv=0" response = requests.get(values_url, headers=headers, verify=False) soup = BeautifulSoup(response.text, 'html.parser') tasks = str(soup.get_text('reportsubdesc')).replace("reportsubdesc", " ").replace("ImportanceCategoryTask ", "") tasks = clean(tasks) tasks = tasks.split('extent work value')[1] tasks = tasks.split('back to top')[0] tasks = remove_new_line(tasks).replace("related occupations", " ").replace(")importance value", " ") tasks = tasks.split(". ") split_data = [item.split(" -- ")[0] for item in tasks] num_desc = [] for i in range(len(tasks)): temp = [','.join(item) for item in split_data][i].split(',') num_desc.append([''.join([c for c in temp if c in '0123456789']), ''.join([c for c in temp if c not in '0123456789']).replace(')context work context', '')]) df7 = pd.DataFrame(num_desc, columns = ['Importance', 'Value']) df7 = df7[df7['Importance'] != ''] values = df7 return values def get_onet_styles(onetCode): headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2 Safari/605.1.15'} style_url = "https://www.onetonline.org/link/result/" + onetCode + "?c=ws&n_ws=0&c_ws=0" response = requests.get(style_url, headers=headers, verify=False) soup = BeautifulSoup(response.text, 'html.parser') tasks = str(soup.get_text('reportsubdesc')).replace("reportsubdesc", " ").replace("ImportanceCategoryTask ", "") tasks = clean(tasks) tasks = tasks.split('show all show top 10')[1] tasks = tasks.split('back to top')[0] tasks = remove_new_line(tasks).replace("related occupations", " ").replace(")importance work style", "").replace(")importance style", " ") tasks = tasks.split(". ") split_data = [item.split(" -- ")[0] for item in tasks] num_desc = [] for i in range(len(tasks)): temp = [','.join(item) for item in split_data][i].split(',') num_desc.append([''.join([c for c in temp if c in '0123456789']), ''.join([c for c in temp if c not in '0123456789']).replace(')context work context', '')]) df8 = pd.DataFrame(num_desc, columns = ['Importance', 'Style']) df8 = df8[df8['Importance'] != ''] styles = df8 return styles def get_job_postings(onetCode, state): headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2 Safari/605.1.15'} url = "https://www.onetonline.org/link/localjobs/" + onetCode + "?st=" + state response = requests.get(url, headers=headers, verify=False) soup = BeautifulSoup(response.text, 'html.parser') jobs = str(soup.get_text("tbody")).split('PostedtbodyTitle and CompanytbodyLocation')[1].split('Sources:')[0].split("tbody") jobs = jobs[5:45] starts = np.linspace(start=0, stop=len(jobs)-4,num= 10) stops = np.linspace(start=3, stop=len(jobs)-1, num= 10) jobpostings = [] for i in range(0,10): jobpostings.append(str([' '.join(jobs[int(starts[i]):int(stops[i])])]).replace("['", '').replace("']", '')) links = str(soup.find_all('a', href=True)).split("")[1].split(', ')[0].replace("href=", "") linklist.append(links[i].replace('"', '')) return jobpostings, linklist