Spaces:
Runtime error
Runtime error
provide documentation
Browse files- main.py +76 -56
- static/cohere_tSNE_dat.csv +0 -3
main.py
CHANGED
@@ -1,3 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI, Request, Form, File, UploadFile
|
2 |
from fastapi.templating import Jinja2Templates
|
3 |
from fastapi.staticfiles import StaticFiles
|
@@ -18,46 +27,94 @@ from nltk.tokenize import SpaceTokenizer
|
|
18 |
import nltk
|
19 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
20 |
from dotenv import load_dotenv
|
|
|
|
|
21 |
load_dotenv()
|
22 |
|
|
|
23 |
try:
|
24 |
_create_unverified_https_context = ssl._create_unverified_context
|
25 |
except AttributeError:
|
26 |
pass
|
27 |
else:
|
28 |
ssl._create_default_https_context = _create_unverified_https_context
|
|
|
|
|
29 |
if os.path.isdir('nltk_data')==False:
|
30 |
nltk.download('stopwords', quiet=True)
|
31 |
|
|
|
32 |
app = FastAPI()
|
33 |
app.mount("/static", StaticFiles(directory='static'), name="static")
|
34 |
templates = Jinja2Templates(directory="templates/")
|
35 |
|
|
|
36 |
onet = pd.read_csv('static/ONET_JobTitles.csv')
|
37 |
simdat = pd.read_csv('static/cohere_embeddings.csv')
|
38 |
-
coheredat = pd.read_csv("static/cohere_tSNE_dat.csv")
|
39 |
|
|
|
|
|
40 |
model = AutoModelForSequenceClassification.from_pretrained('static/model_shards', low_cpu_mem_usage=True)
|
41 |
tokenizer = AutoTokenizer.from_pretrained('static/tokenizer_shards', low_cpu_mem_usage=True)
|
42 |
classifier = pipeline('text-classification', model = model, tokenizer = tokenizer)
|
43 |
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
@app.get("/")
|
47 |
def render_job_list(request: Request):
|
48 |
joblist = onet['JobTitle']
|
49 |
return templates.TemplateResponse('job_list.html', context={'request': request, 'joblist': joblist})
|
50 |
|
51 |
-
#
|
52 |
@app.post("/")
|
53 |
def render_job_info(request: Request, jobtitle: str = Form(enum=[x for x in onet['JobTitle']])):
|
54 |
-
|
55 |
-
def remove_new_line(value):
|
56 |
-
return ''.join(value.splitlines())
|
57 |
-
|
58 |
joblist = onet['JobTitle']
|
59 |
-
|
60 |
if jobtitle:
|
|
|
61 |
onetCode = onet.loc[onet['JobTitle'] == jobtitle, 'onetCode']
|
62 |
onetCode = onetCode.reindex().tolist()[0]
|
63 |
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2 Safari/605.1.15'}
|
@@ -76,6 +133,7 @@ def render_job_info(request: Request, jobtitle: str = Form(enum=[x for x in onet
|
|
76 |
tasks = remove_new_line(tasks).replace("related occupations", " ").replace("core", " - ").replace(" )importance category task", "").replace(" find ", "")
|
77 |
tasks = tasks.split(". ")
|
78 |
tasks = [''.join(map(lambda c: '' if c in '0123456789-' else c, task)) for task in tasks]
|
|
|
79 |
return templates.TemplateResponse('job_list.html', context={
|
80 |
'request': request,
|
81 |
'joblist': joblist,
|
@@ -83,20 +141,22 @@ def render_job_info(request: Request, jobtitle: str = Form(enum=[x for x in onet
|
|
83 |
'jobdescription': jobdescription,
|
84 |
'tasks': tasks})
|
85 |
|
86 |
-
###
|
87 |
@app.get("/explore-job-neighborhoods/", response_class=HTMLResponse)
|
88 |
def render_job_neighborhoods(request: Request):
|
89 |
return templates.TemplateResponse('job_neighborhoods.html', context={'request': request})
|
90 |
|
91 |
-
###
|
92 |
-
#
|
93 |
@app.get("/find-my-match/", response_class=HTMLResponse)
|
94 |
-
|
95 |
return templates.TemplateResponse('find_my_match.html', context={'request': request})
|
96 |
|
97 |
-
#
|
98 |
@app.post('/find-my-match/', response_class=HTMLResponse)
|
99 |
-
def get_resume(request: Request, resume: UploadFile = File(...)):
|
|
|
|
|
100 |
path = f"static/{resume.filename}"
|
101 |
with open(path, 'wb') as buffer:
|
102 |
buffer.write(resume.file.read())
|
@@ -106,34 +166,13 @@ def get_resume(request: Request, resume: UploadFile = File(...)):
|
|
106 |
text.append(para.text)
|
107 |
resume = "\n".join(text)
|
108 |
|
109 |
-
def clean_my_text(text):
|
110 |
-
clean_text = ' '.join(text.splitlines())
|
111 |
-
clean_text = clean_text.replace('-', " ").replace("/"," ")
|
112 |
-
clean_text = clean(clean_text.translate(str.maketrans('', '', string.punctuation)))
|
113 |
-
return clean_text
|
114 |
-
|
115 |
-
def coSkillEmbed(text):
|
116 |
-
try:
|
117 |
-
co = cohere.Client(os.getenv("COHERE_TOKEN"))
|
118 |
-
response = co.embed(
|
119 |
-
model='large',
|
120 |
-
texts=[text])
|
121 |
-
return response.embeddings
|
122 |
-
except CohereError as e:
|
123 |
-
return e
|
124 |
-
|
125 |
-
def cosine(A, B):
|
126 |
-
return np.dot(A,B)/(norm(A)*norm(B))
|
127 |
-
|
128 |
# GET RESUME EMBEDDINGS AND JOB SIMILARITY SCORES
|
129 |
embeds = coSkillEmbed(resume)
|
130 |
simResults = []
|
131 |
-
|
132 |
for i in range(len(simdat)):
|
133 |
simResults.append(cosine(np.array(embeds), np.array(simdat.iloc[i,1:])))
|
134 |
simResults = pd.DataFrame(simResults)
|
135 |
simResults['JobTitle'] = simdat['Title']
|
136 |
-
|
137 |
simResults = simResults.iloc[:,[1,0]]
|
138 |
simResults.columns = ['JobTitle', 'Similarity']
|
139 |
simResults = simResults.sort_values(by = "Similarity", ascending = False)
|
@@ -144,25 +183,6 @@ def get_resume(request: Request, resume: UploadFile = File(...)):
|
|
144 |
simResults.iloc[x,1] = "{:0.2f}".format(simResults.iloc[x,1])
|
145 |
|
146 |
# EXTRACT SKILLS FROM RESUME
|
147 |
-
def skillNER(resume):
|
148 |
-
resume = clean_my_text(resume)
|
149 |
-
stops = set(nltk.corpus.stopwords.words('english'))
|
150 |
-
stops = stops.union({'eg', 'ie', 'etc', 'experience', 'experiences', 'experienced', 'experiencing', 'knowledge',
|
151 |
-
'ability', 'abilities', 'skill', 'skills', 'skilled', 'including', 'includes', 'included', 'include'
|
152 |
-
'education', 'follow', 'following', 'follows', 'followed', 'make', 'made', 'makes', 'making', 'maker',
|
153 |
-
'available', 'large', 'larger', 'largescale', 'client', 'clients', 'responsible', 'x', 'many', 'team', 'teams'})
|
154 |
-
resume = [word for word in SpaceTokenizer().tokenize(resume) if word not in stops]
|
155 |
-
resume = [word for word in resume if ")" not in word]
|
156 |
-
resume = [word for word in resume if "(" not in word]
|
157 |
-
|
158 |
-
labels = []
|
159 |
-
for i in range(len(resume)):
|
160 |
-
classification = classifier(resume[i])[0]['label']
|
161 |
-
if classification == 'LABEL_1':
|
162 |
-
labels.append("Skill")
|
163 |
-
else:
|
164 |
-
labels.append("Not Skill")
|
165 |
-
labels_dict = dict(zip(resume, labels))
|
166 |
-
return labels_dict
|
167 |
skills = skillNER(resume)
|
|
|
168 |
return templates.TemplateResponse('find_my_match.html', context={'request': request, 'resume': resume, 'skills': skills, 'simResults': simResults})
|
|
|
1 |
+
# Author: Caitlin Blackmore
|
2 |
+
# Project: Pathfinder
|
3 |
+
# Project Description: This is a web application designed to facilitate job-mobility.
|
4 |
+
# It uses NLP to help job seekers find jobs that match their skills and interests.
|
5 |
+
# Date: 2023-02-03
|
6 |
+
# File Description: This is the main file, containing the FastAPI app and all the endpoints.
|
7 |
+
# License: MIT License
|
8 |
+
|
9 |
+
# IMPORTS
|
10 |
from fastapi import FastAPI, Request, Form, File, UploadFile
|
11 |
from fastapi.templating import Jinja2Templates
|
12 |
from fastapi.staticfiles import StaticFiles
|
|
|
27 |
import nltk
|
28 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
29 |
from dotenv import load_dotenv
|
30 |
+
|
31 |
+
# LOAD ENVIRONMENT VARIABLES
|
32 |
load_dotenv()
|
33 |
|
34 |
+
# SSL CERTIFICATE FIX
|
35 |
try:
|
36 |
_create_unverified_https_context = ssl._create_unverified_context
|
37 |
except AttributeError:
|
38 |
pass
|
39 |
else:
|
40 |
ssl._create_default_https_context = _create_unverified_https_context
|
41 |
+
|
42 |
+
# DOWNLOAD NLTK DATA IF NOT ALREADY DOWNLOADED
|
43 |
if os.path.isdir('nltk_data')==False:
|
44 |
nltk.download('stopwords', quiet=True)
|
45 |
|
46 |
+
# APP SETUP
|
47 |
app = FastAPI()
|
48 |
app.mount("/static", StaticFiles(directory='static'), name="static")
|
49 |
templates = Jinja2Templates(directory="templates/")
|
50 |
|
51 |
+
# LOAD DATA
|
52 |
onet = pd.read_csv('static/ONET_JobTitles.csv')
|
53 |
simdat = pd.read_csv('static/cohere_embeddings.csv')
|
|
|
54 |
|
55 |
+
# LOAD FINE-TUNED MODEL
|
56 |
+
# (see https://huggingface.co/celise88/distilbert-base-uncased-finetuned-binary-classifier)
|
57 |
model = AutoModelForSequenceClassification.from_pretrained('static/model_shards', low_cpu_mem_usage=True)
|
58 |
tokenizer = AutoTokenizer.from_pretrained('static/tokenizer_shards', low_cpu_mem_usage=True)
|
59 |
classifier = pipeline('text-classification', model = model, tokenizer = tokenizer)
|
60 |
|
61 |
+
# UTILITY FUNCTIONS
|
62 |
+
def clean_my_text(text):
|
63 |
+
clean_text = ' '.join(text.splitlines())
|
64 |
+
clean_text = clean_text.replace('-', " ").replace("/"," ")
|
65 |
+
clean_text = clean(clean_text.translate(str.maketrans('', '', string.punctuation)))
|
66 |
+
return clean_text
|
67 |
+
|
68 |
+
def remove_new_line(value):
|
69 |
+
return ''.join(value.splitlines())
|
70 |
+
|
71 |
+
def coSkillEmbed(text):
|
72 |
+
try:
|
73 |
+
co = cohere.Client(os.getenv("COHERE_TOKEN"))
|
74 |
+
response = co.embed(
|
75 |
+
model='large',
|
76 |
+
texts=[text])
|
77 |
+
return response.embeddings
|
78 |
+
except CohereError as e:
|
79 |
+
return e
|
80 |
+
|
81 |
+
def skillNER(resume):
|
82 |
+
resume = clean_my_text(resume)
|
83 |
+
stops = set(nltk.corpus.stopwords.words('english'))
|
84 |
+
stops = stops.union({'eg', 'ie', 'etc', 'experience', 'experiences', 'experienced', 'experiencing', 'knowledge',
|
85 |
+
'ability', 'abilities', 'skill', 'skills', 'skilled', 'including', 'includes', 'included', 'include'
|
86 |
+
'education', 'follow', 'following', 'follows', 'followed', 'make', 'made', 'makes', 'making', 'maker',
|
87 |
+
'available', 'large', 'larger', 'largescale', 'client', 'clients', 'responsible', 'x', 'many', 'team', 'teams'})
|
88 |
+
resume = [word for word in SpaceTokenizer().tokenize(resume) if word not in stops]
|
89 |
+
resume = [word for word in resume if ")" not in word]
|
90 |
+
resume = [word for word in resume if "(" not in word]
|
91 |
+
|
92 |
+
labels = []
|
93 |
+
for i in range(len(resume)):
|
94 |
+
classification = classifier(resume[i])[0]['label']
|
95 |
+
if classification == 'LABEL_1':
|
96 |
+
labels.append("Skill")
|
97 |
+
else:
|
98 |
+
labels.append("Not Skill")
|
99 |
+
labels_dict = dict(zip(resume, labels))
|
100 |
+
return labels_dict
|
101 |
+
|
102 |
+
def cosine(A, B):
|
103 |
+
return np.dot(A,B)/(norm(A)*norm(B))
|
104 |
+
|
105 |
+
### JOB INFORMATION CENTER ###
|
106 |
+
# GET
|
107 |
@app.get("/")
|
108 |
def render_job_list(request: Request):
|
109 |
joblist = onet['JobTitle']
|
110 |
return templates.TemplateResponse('job_list.html', context={'request': request, 'joblist': joblist})
|
111 |
|
112 |
+
# POST
|
113 |
@app.post("/")
|
114 |
def render_job_info(request: Request, jobtitle: str = Form(enum=[x for x in onet['JobTitle']])):
|
|
|
|
|
|
|
|
|
115 |
joblist = onet['JobTitle']
|
|
|
116 |
if jobtitle:
|
117 |
+
# SCRAPE ONET TO GET JOB DESCRIPTION, TASKS, ETC.
|
118 |
onetCode = onet.loc[onet['JobTitle'] == jobtitle, 'onetCode']
|
119 |
onetCode = onetCode.reindex().tolist()[0]
|
120 |
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2 Safari/605.1.15'}
|
|
|
133 |
tasks = remove_new_line(tasks).replace("related occupations", " ").replace("core", " - ").replace(" )importance category task", "").replace(" find ", "")
|
134 |
tasks = tasks.split(". ")
|
135 |
tasks = [''.join(map(lambda c: '' if c in '0123456789-' else c, task)) for task in tasks]
|
136 |
+
|
137 |
return templates.TemplateResponse('job_list.html', context={
|
138 |
'request': request,
|
139 |
'joblist': joblist,
|
|
|
141 |
'jobdescription': jobdescription,
|
142 |
'tasks': tasks})
|
143 |
|
144 |
+
### JOB NEIGHBORHOODS ###
|
145 |
@app.get("/explore-job-neighborhoods/", response_class=HTMLResponse)
|
146 |
def render_job_neighborhoods(request: Request):
|
147 |
return templates.TemplateResponse('job_neighborhoods.html', context={'request': request})
|
148 |
|
149 |
+
### FIND-MY-MATCH ###
|
150 |
+
# GET
|
151 |
@app.get("/find-my-match/", response_class=HTMLResponse)
|
152 |
+
def match_page(request: Request):
|
153 |
return templates.TemplateResponse('find_my_match.html', context={'request': request})
|
154 |
|
155 |
+
# POST
|
156 |
@app.post('/find-my-match/', response_class=HTMLResponse)
|
157 |
+
async def get_resume(request: Request, resume: UploadFile = File(...)):
|
158 |
+
|
159 |
+
# READ AND PERFORM BASIC CLEANING ON RESUME
|
160 |
path = f"static/{resume.filename}"
|
161 |
with open(path, 'wb') as buffer:
|
162 |
buffer.write(resume.file.read())
|
|
|
166 |
text.append(para.text)
|
167 |
resume = "\n".join(text)
|
168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
# GET RESUME EMBEDDINGS AND JOB SIMILARITY SCORES
|
170 |
embeds = coSkillEmbed(resume)
|
171 |
simResults = []
|
|
|
172 |
for i in range(len(simdat)):
|
173 |
simResults.append(cosine(np.array(embeds), np.array(simdat.iloc[i,1:])))
|
174 |
simResults = pd.DataFrame(simResults)
|
175 |
simResults['JobTitle'] = simdat['Title']
|
|
|
176 |
simResults = simResults.iloc[:,[1,0]]
|
177 |
simResults.columns = ['JobTitle', 'Similarity']
|
178 |
simResults = simResults.sort_values(by = "Similarity", ascending = False)
|
|
|
183 |
simResults.iloc[x,1] = "{:0.2f}".format(simResults.iloc[x,1])
|
184 |
|
185 |
# EXTRACT SKILLS FROM RESUME
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
skills = skillNER(resume)
|
187 |
+
|
188 |
return templates.TemplateResponse('find_my_match.html', context={'request': request, 'resume': resume, 'skills': skills, 'simResults': simResults})
|
static/cohere_tSNE_dat.csv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:ac3dbbea21867638654b3c399b988ca95c5573cc602383d8835cffe36952a7cb
|
3 |
-
size 1858107
|
|
|
|
|
|
|
|