Spaces:
Runtime error
Runtime error
add model shards to reduce memory consumption
Browse files- main.py +4 -2
- requirements.txt +2 -1
main.py
CHANGED
@@ -14,7 +14,7 @@ import numpy as np
|
|
14 |
from numpy.linalg import norm
|
15 |
from nltk.tokenize import SpaceTokenizer
|
16 |
import nltk
|
17 |
-
from transformers import pipeline
|
18 |
from dotenv import load_dotenv
|
19 |
load_dotenv()
|
20 |
|
@@ -25,7 +25,9 @@ templates = Jinja2Templates(directory="templates/")
|
|
25 |
onet = pd.read_csv('static/ONET_JobTitles.csv')
|
26 |
simdat = pd.read_csv('static/cohere_embeddings.csv')
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
### job information center ###
|
31 |
# get
|
|
|
14 |
from numpy.linalg import norm
|
15 |
from nltk.tokenize import SpaceTokenizer
|
16 |
import nltk
|
17 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
18 |
from dotenv import load_dotenv
|
19 |
load_dotenv()
|
20 |
|
|
|
25 |
onet = pd.read_csv('static/ONET_JobTitles.csv')
|
26 |
simdat = pd.read_csv('static/cohere_embeddings.csv')
|
27 |
|
28 |
+
model = AutoModelForSequenceClassification.from_pretrained('static/model_shards', low_cpu_mem_usage=True)
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained('static/tokenizer_shards', low_cpu_mem_usage=True)
|
30 |
+
classifier = pipeline('text-classification', model = model, tokenizer = tokenizer)
|
31 |
|
32 |
### job information center ###
|
33 |
# get
|
requirements.txt
CHANGED
@@ -14,4 +14,5 @@ unidecode==1.3.6
|
|
14 |
cohere==3.1.5
|
15 |
python-dotenv==0.21.1
|
16 |
transformers==4.25.1
|
17 |
-
torch==1.13.1
|
|
|
|
14 |
cohere==3.1.5
|
15 |
python-dotenv==0.21.1
|
16 |
transformers==4.25.1
|
17 |
+
torch==1.13.1
|
18 |
+
accelerate==0.16.0
|