Spaces:
Running
Running
admin
commited on
Commit
·
353de0b
1
Parent(s):
4279937
upl base
Browse files- .gitattributes +11 -11
- .gitignore +6 -0
- README.md +1 -1
- app.py +436 -0
- model.py +145 -0
- requirements.txt +6 -0
- utils.py +67 -0
.gitattributes
CHANGED
@@ -1,35 +1,35 @@
|
|
1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
|
|
6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
|
|
11 |
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
13 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
17 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
|
|
20 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
|
|
22 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
|
|
24 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.db* filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.ark* filter=lfs diff=lfs merge=lfs -text
|
30 |
+
**/*ckpt*data* filter=lfs diff=lfs merge=lfs -text
|
31 |
+
**/*ckpt*.meta filter=lfs diff=lfs merge=lfs -text
|
32 |
+
**/*ckpt*.index filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.wav filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.pt
|
2 |
+
__pycache__/*
|
3 |
+
tmp/*
|
4 |
+
flagged/*
|
5 |
+
test.py
|
6 |
+
rename.sh
|
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: CTIS
|
3 |
-
emoji:
|
4 |
colorFrom: indigo
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
title: CTIS
|
3 |
+
emoji: 🪕🎶
|
4 |
colorFrom: indigo
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
app.py
ADDED
@@ -0,0 +1,436 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import random
|
4 |
+
import shutil
|
5 |
+
import librosa
|
6 |
+
import warnings
|
7 |
+
import numpy as np
|
8 |
+
import gradio as gr
|
9 |
+
import librosa.display
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
from utils import get_modelist, find_files, embed_img, TEMP_DIR
|
12 |
+
from collections import Counter
|
13 |
+
from model import EvalNet
|
14 |
+
|
15 |
+
|
16 |
+
TRANSLATE = {
|
17 |
+
"C0090": ["大笒", "da4_cen2"],
|
18 |
+
"C0091": ["高音横笛", "Treble_heng2_di2"],
|
19 |
+
"C0092": ["低音横笛", "Bass_heng2_di2"],
|
20 |
+
"C0093": ["中音横笛", "Alto_heng2_di2"],
|
21 |
+
"C0094": ["唢呐", "suo3_na"],
|
22 |
+
"C0095": ["长唢呐", "chang2_suo3_na"],
|
23 |
+
"C0096": ["小筚篥", "Treble_bi4_li"],
|
24 |
+
"C0097": ["中音筚篥", "Alto_bi4_li"],
|
25 |
+
"C0098": ["低音筚篥", "Bass_bi4_li"],
|
26 |
+
"C0099": ["短箫", "duan3_xiao1"],
|
27 |
+
"C0100": ["短箫(传统)", "duan3_xiao1_(traditional)"],
|
28 |
+
"C0101": ["洞箫", "dong4_xiao1"],
|
29 |
+
"C0113": ["尖子号", "jian1_zi3_hao4"],
|
30 |
+
"C0114": ["尖子号2", "jian1_zi3_hao4_2"],
|
31 |
+
"C0117": ["南音洞箫", "nan2_yin1_dong4_xiao1"],
|
32 |
+
"C0123": ["南嗳仔", "nan2_ai1_zai3"],
|
33 |
+
"C0124": ["大吹", "da4_chui1"],
|
34 |
+
"C0182": ["长号", "chang2_hao4"],
|
35 |
+
"C0183": ["老长号", "lao3_chang2_hao4"],
|
36 |
+
"C0187": ["高音唢呐", "Treble_suo3_na"],
|
37 |
+
"C0188": ["低音唢呐", "Bass_suo3_na"],
|
38 |
+
"C0200": ["大芦笙", "da4_lu2_sheng1"],
|
39 |
+
"C0201": ["小芦笙", "xiao3_lu2_sheng1"],
|
40 |
+
"C0237": ["G调梆笛", "bang1_di2_in_G"],
|
41 |
+
"C0243": ["高音键笙", "Treble_jian4_sheng1"],
|
42 |
+
"C0244": ["传统笙", "traditional_sheng1"],
|
43 |
+
"C0257": ["低音加键唢呐", "Bass_jia1_jian4_suo3_na"],
|
44 |
+
"C0259": ["中音加键唢呐", "Alto_jia1_jian4_suo3_na"],
|
45 |
+
"C0263": ["中音笙", "Alto_sheng1"],
|
46 |
+
"C0264": ["低音笙", "Bass_sheng1"],
|
47 |
+
"C0265": ["管子", "guan3_zi"],
|
48 |
+
"C0280": ["A调曲笛", "qu3_di2_in_A"],
|
49 |
+
"C0281": ["G调新笛", "xin1_di2_in_G"],
|
50 |
+
"C0282": ["萧", "xiao1"],
|
51 |
+
"C0283": ["埙", "xun1"],
|
52 |
+
"C0296": ["唢呐2", "suo3_na_2"],
|
53 |
+
"C0303": ["小闷笛", "xiao3_men1_di2"],
|
54 |
+
"C0304": ["侗笛", "dong4_di2"],
|
55 |
+
"C0305": ["德", "de2"],
|
56 |
+
"C0306": ["拉祜族葫芦笙", "la1_hu2_zu2_hu2_lu2_sheng1"],
|
57 |
+
"C0308": ["吐良", "tu3_liang2"],
|
58 |
+
"C0309": ["葫芦丝", "hu2_lu2_si1"],
|
59 |
+
"C0310": ["F调巴乌", "ba1_wu1_in_F"],
|
60 |
+
"C0311": ["俄比", "e2_bi3"],
|
61 |
+
"C0316": ["侗巴", "dong4_ba1"],
|
62 |
+
"D0015": ["扬琴", "yang2_qin2"],
|
63 |
+
"D0048": ["低音大锣", "Bass_da4_luo2"],
|
64 |
+
"D0049": ["虎音锣", "hu3_yin1_luo2"],
|
65 |
+
"D0050": ["小钹", "xiao3_bo1"],
|
66 |
+
"D0051": ["钹", "bo1"],
|
67 |
+
"D0058": ["提手(板)", "ti2_shou3_(ban3)"],
|
68 |
+
"D0060": ["川小锣", "chuan1_xiao3_luo2"],
|
69 |
+
"D0061": ["大铛铛", "da4_cheng1_cheng1"],
|
70 |
+
"D0062": ["小铛铛", "xiao3_cheng1_cheng1"],
|
71 |
+
"D0063": ["二馨", "er4_xin1"],
|
72 |
+
"D0064": ["川大钵", "chuan1_da4_bo1"],
|
73 |
+
"D0065": ["苏钵", "su1_bo1"],
|
74 |
+
"D0066": ["川剧堂鼓", "chuan1_ju4_tang2_gu3"],
|
75 |
+
"D0067": ["川铰", "chuan1_jiao3"],
|
76 |
+
"D0068": ["川大锣", "chuan1_da4_luo2"],
|
77 |
+
"D0069": ["蛮锣", "man2_luo2"],
|
78 |
+
"D0070": ["包锣", "bao1_luo2"],
|
79 |
+
"D0071": ["引鼓", "yin3_gu3"],
|
80 |
+
"D0102": ["上杖鼓", "shang4_zhang4_gu3"],
|
81 |
+
"D0103": ["小锣", "xiao3_luo2"],
|
82 |
+
"D0104": ["圆锣", "yuan2_luo2"],
|
83 |
+
"D0105": ["杖鼓", "zhang4_gu3"],
|
84 |
+
"D0125": ["南鼓", "nan2_gu3"],
|
85 |
+
"D0126": ["压脚鼓", "ya1_jiao3_gu3"],
|
86 |
+
"D0127": ["钟", "zhong1"],
|
87 |
+
"D0128": ["草锣", "cao3_luo2"],
|
88 |
+
"D0129": ["锣仔", "luo2_zai3"],
|
89 |
+
"D0130": ["响盏", "xiang3_zhan3"],
|
90 |
+
"D0131": ["小叫", "xiao3_jiao4"],
|
91 |
+
"D0132": ["拍", "pai1"],
|
92 |
+
"D0137": ["渔鼓", "yu2_gu3"],
|
93 |
+
"D0138": ["简板", "jian3_ban3"],
|
94 |
+
"D0140": ["脚梆子", "jiao3_bang1_zi"],
|
95 |
+
"D0143": ["双铃", "shuang1_ling2"],
|
96 |
+
"D0144": ["小叫锣", "xiao3_jiao4_luo2"],
|
97 |
+
"D0145": ["拍板", "pai1_ban3"],
|
98 |
+
"D0146": ["四宝", "si4_bao3"],
|
99 |
+
"D0147": ["响盏2", "xiang3_zhan3_2"],
|
100 |
+
"D0172": ["碗碗", "wan3_wan3"],
|
101 |
+
"D0173": ["代子", "dai4_zi"],
|
102 |
+
"D0176": ["福(新)", "fu2_(reformed)"],
|
103 |
+
"D0177": ["禄(新)", "lu4_(reformed)"],
|
104 |
+
"D0178": ["寿(新)", "shou4_(reformed)"],
|
105 |
+
"D0179": ["宜春三星鼓福鼓老鼓", "yi2_chun1_san1_xing1_gu3_fu2_gu3_(traditional)"],
|
106 |
+
"D0180": ["宜春三星鼓禄鼓老鼓", "yi2_chun1_san1_xing1_gu3_lu4_gu3_(traditional)"],
|
107 |
+
"D0181": ["宜春三星鼓寿鼓老鼓", "yi2_chun1_san1_xing1_gu3_shou4_gu3_(traditional)"],
|
108 |
+
"D0184": ["宜春三星鼓双铛", "yi2_chun1_san1_xing1_gu3_shuang1_ding1"],
|
109 |
+
"D0185": ["宜春三星鼓单铛", "yi2_chun1_san1_xing1_gu3_dan1_ding1"],
|
110 |
+
"D0186": ["宜春三星鼓镲", "yi2_chun1_san1_xing1_gu3_chao3"],
|
111 |
+
"D0241": ["编钟", "bian1_zhong1"],
|
112 |
+
"D0242": ["编磬", "bian1_qing4"],
|
113 |
+
"D0245": ["南梆子", "nan2_bang1_zi"],
|
114 |
+
"D0246": ["北梆子", "bei3_bang1_zi"],
|
115 |
+
"D0247": ["碰铃", "peng4_ling2"],
|
116 |
+
"D0248": ["中国大鼓", "Chinese_da4_gu3"],
|
117 |
+
"D0249": ["花盆鼓", "hua1_pen2_gu3"],
|
118 |
+
"D0250": ["小堂鼓", "xiao3_tang2_gu3"],
|
119 |
+
"D0251": ["扁鼓", "bian3_gu3"],
|
120 |
+
"D0252": ["五音排鼓", "wu3_yin1_pai2_gu3"],
|
121 |
+
"D0268": ["草帽镲", "cao3_mao4_chao3"],
|
122 |
+
"D0269": ["铙", "nao2"],
|
123 |
+
"D0270": ["铙钹", "nao2_bo1"],
|
124 |
+
"D0271": ["小镲", "xiao3_chao3"],
|
125 |
+
"D0272": ["抄锣", "chao1_luo2"],
|
126 |
+
"D0273": ["中虎", "zhong1_hu3"],
|
127 |
+
"D0274": ["武锣", "wu3_luo2"],
|
128 |
+
"D0275": ["小锣2", "xiao3_luo2_2"],
|
129 |
+
"D0276": ["马锣", "ma3_luo2"],
|
130 |
+
"D0277": ["木鱼", "mu4_yu2"],
|
131 |
+
"D0278": ["板鼓", "ban3_gu3"],
|
132 |
+
"D0279": ["云锣", "yun2_luo2"],
|
133 |
+
"D0284": ["斗锣", "dou3_luo2"],
|
134 |
+
"D0286": ["曲锣", "qu3_luo2"],
|
135 |
+
"D0287": ["深波", "shen1_bo1"],
|
136 |
+
"D0290": ["大镲", "da4_chao3"],
|
137 |
+
"D0298": ["编铓", "bian1_zhang1"],
|
138 |
+
"D0299": ["牛铃", "niu2_ling2"],
|
139 |
+
"D0315": ["竹排琴", "zhu2_pai2_qin2"],
|
140 |
+
"D0325": ["那格拉", "na4_ge2_la1"],
|
141 |
+
"D0326": ["库休克", "ku4_xiu1_ke4"],
|
142 |
+
"D0327": ["萨巴依", "sa4_ba1_yi1"],
|
143 |
+
"D0328": ["手鼓", "shou3_gu3"],
|
144 |
+
"L0044": ["锡剧主胡", "xi1_ju4_zhu3_hu2"],
|
145 |
+
"L0045": ["扬剧主胡", "yang2_ju4_zhu3_hu2"],
|
146 |
+
"L0046": ["扬剧主胡F调", "yang2_ju4_zhu3_hu2_in_F"],
|
147 |
+
"L0047": ["扬剧主胡(小西皮)", "yang2_ju4_zhu3_hu2_(xiao3_xi1_pi2)"],
|
148 |
+
"L0053": ["广西彩调主胡", "guang3_xi1_cai3_diao4_zhu3_hu2"],
|
149 |
+
"L0055": ["牛腿琴", "niu2_tui3_qin2"],
|
150 |
+
"L0056": ["壮剧马骨胡D调", "zhuang4_ju4_ma3_gu3_hu2_in_D"],
|
151 |
+
"L0072": ["盖板(新)D调", "gai4_ban3_(reformed)_in_D"],
|
152 |
+
"L0073": ["盖板(传统)", "gai4_ban3_(traditional)"],
|
153 |
+
"L0074": ["壮剧土胡", "zhuang4_ju4_tu3_hu2"],
|
154 |
+
"L0075": ["晋剧晋胡", "jin4_ju4_jin4_hu2"],
|
155 |
+
"L0076": ["壮剧土胡2", "zhuang4_ju4_tu3_hu2_2"],
|
156 |
+
"L0077": ["晋剧二股弦", "jin4_ju4_er4_gu3_xian2"],
|
157 |
+
"L0080": ["吕剧坠琴", "lv3_ju4_zhui4_qin2"],
|
158 |
+
"L0084": ["奚琴(传统)", "xi1_qin2_(traditional)"],
|
159 |
+
"L0085": ["奚琴(改良)", "xi1_qin2_(reformed)"],
|
160 |
+
"L0086": ["中音奚琴(改良)", "Alto_xi1_qin2_(reformed)"],
|
161 |
+
"L0115": ["莱芜梆子-梆胡", "lai2_wu2_bang1_zi-bang1_hu2"],
|
162 |
+
"L0121": ["六角弦", "liu4_jiao3_xian2"],
|
163 |
+
"L0122": ["壳仔弦", "ke2_zai3_xian2"],
|
164 |
+
"L0133": ["陇剧陇胡(传统)", "long3_ju4_long3_hu2_(traditional)"],
|
165 |
+
"L0134": ["陇剧陇胡(改良)D调", "long3_ju4_long3_hu2_(reformed)_in_D"],
|
166 |
+
"L0135": ["齐琴", "qi2_qin2"],
|
167 |
+
"L0136": ["渔胡", "yu2_hu2"],
|
168 |
+
"L0139": ["坠胡", "zhui4_hu2"],
|
169 |
+
"L0141": ["越胡", "yue4_hu2"],
|
170 |
+
"L0148": ["板胡", "ban3_hu2"],
|
171 |
+
"L0149": ["绍剧板胡", "shao4_ju4_ban3_hu2"],
|
172 |
+
"L0150": ["宛梆子梆胡", "yuan1_bang1_zi_bang1_hu2"],
|
173 |
+
"L0151": ["四弦", "si4_xian2"],
|
174 |
+
"L0152": ["滇葫(小二胡)", "dian1_hu2_(xiao3_er4_hu2)"],
|
175 |
+
"L0153": ["云南花灯丝弦", "yun2_nan2_hua1_deng1_si1_xian2"],
|
176 |
+
"L0154": ["仕胡", "shi4_hu2"],
|
177 |
+
"L0155": ["伬胡", "chi4_hu2"],
|
178 |
+
"L0156": ["工胡", "gong1_hu2"],
|
179 |
+
"L0157": ["大胡", "da4_hu2"],
|
180 |
+
"L0158": ["低音伬胡", "Bass_chi4_hu2"],
|
181 |
+
"L0160": ["丝弦", "si1_xian2"],
|
182 |
+
"L0161": ["滇胡", "dian1_hu2"],
|
183 |
+
"L0162": ["襄阳专用胡琴", "xiang1_yang2_zhuan1_yong4_hu2_qin2"],
|
184 |
+
"L0163": ["雷胡", "lei2_hu2"],
|
185 |
+
"L0164": ["赣胡", "gan4_hu2"],
|
186 |
+
"L0165": ["高腔赣胡", "gao1_qiang1_gan4_hu2"],
|
187 |
+
"L0166": ["高腔赣胡第2代", "gao1_qiang1_gan4_hu2_2nd_generation"],
|
188 |
+
"L0167": ["黔胡", "qian2_hu2"],
|
189 |
+
"L0168": ["花胡", "hua1_hu2"],
|
190 |
+
"L0169": ["花胡2", "hua1_hu2_2"],
|
191 |
+
"L0170": ["二股弦", "er4_gu3_xian2"],
|
192 |
+
"L0239": ["高音板胡", "Treble_ban3_hu2"],
|
193 |
+
"L0240": ["中音板胡", "Alto_ban3_hu2"],
|
194 |
+
"L0256": ["雷琴", "lei2_qin2"],
|
195 |
+
"L0266": ["二胡", "er4_hu2"],
|
196 |
+
"L0285": ["二弦", "er4_xian2"],
|
197 |
+
"L0288": ["椰胡", "ye1_hu2"],
|
198 |
+
"L0291": ["扁八角高胡", "bian3_ba1_jiao3_gao1_hu2"],
|
199 |
+
"L0292": ["六角高胡", "liu4_jiao3_gao1_hu2"],
|
200 |
+
"L0297": ["中胡", "zhong1_hu2"],
|
201 |
+
"L0307": ["芦笙", "lu2_sheng1"],
|
202 |
+
"L0312": ["牛角胡", "niu2_jiao3_hu2"],
|
203 |
+
"L0313": ["佤族独弦琴", "wa3_zu2_du2_xian2_qin2"],
|
204 |
+
"L0314": ["葫芦琴", "hu2_lu2_qin2"],
|
205 |
+
"T0006": ["陶布舒尔", "tao2_bu4_shu1_er3"],
|
206 |
+
"T0007": ["雅托嘎", "ya3_tuo1_ga2"],
|
207 |
+
"T0078": ["四股弦", "si4_gu3_xian2"],
|
208 |
+
"T0081": ["玄琴", "xuan2_qin2"],
|
209 |
+
"T0082": ["伽倻琴(改良)", "jia1_ye2_qin2_(reformed)"],
|
210 |
+
"T0083": ["伽倻琴", "jia1_ye2_qin2"],
|
211 |
+
"T0087": ["雅筝", "ya3_zheng1"],
|
212 |
+
"T0088": ["扬琴2", "yang2_qin2_2"],
|
213 |
+
"T0089": ["扬琴3", "yang2_qin2_3"],
|
214 |
+
"T0111": ["三弦", "san1_xian2"],
|
215 |
+
"T0116": ["八角月琴", "ba1_jiao3_yue4_qin2"],
|
216 |
+
"T0159": ["双清", "shuang1_qing1"],
|
217 |
+
"T0171": ["月琴", "yue4_qin2"],
|
218 |
+
"T0238": ["大阮", "da4_ruan3"],
|
219 |
+
"T0254": ["箜篌", "kong1_hou2"],
|
220 |
+
"T0255": ["古筝", "gu3_zheng1"],
|
221 |
+
"T0260": ["中阮", "zhong1_ruan3"],
|
222 |
+
"T0261": ["柳琴", "liu3_qin2"],
|
223 |
+
"T0262": ["琵琶", "pi2_pa2"],
|
224 |
+
"T0267": ["扬琴4", "yang2_qin2_4"],
|
225 |
+
"T0289": ["三弦2", "san1_xian2_2"],
|
226 |
+
"T0294": ["南音琵琶", "nan2_yin1_pi2_pa2"],
|
227 |
+
"T0295": ["南音三弦", "nan2_yin1_san1_xian2"],
|
228 |
+
"T0300": ["澜沧小三弦", "lan2_cang1_xiao3_san1_xian2"],
|
229 |
+
"T0301": ["玎", "ding1"],
|
230 |
+
"T0302": ["傈傈族奇奔", "li4_li4_zu2_qi2_ben1"],
|
231 |
+
"T0317": ["独弦琴", "du2_xian2_qin2"],
|
232 |
+
"T0318": ["弹拨尔", "dan4_bo1_er3"],
|
233 |
+
"T0319": ["低音热瓦普", "Bass_re4_wa3_pu3"],
|
234 |
+
"T0320": ["民间热瓦普", "folk_re4_wa3_pu3"],
|
235 |
+
"T0323": ["都它尔", "du1_ta1_er3"],
|
236 |
+
}
|
237 |
+
CLASSES = list(TRANSLATE.keys())
|
238 |
+
SAMPLE_RATE = 44100
|
239 |
+
|
240 |
+
|
241 |
+
def circular_padding(spec: np.ndarray, end: int):
|
242 |
+
size = len(spec)
|
243 |
+
if end <= size:
|
244 |
+
return spec
|
245 |
+
|
246 |
+
num_padding = end - size
|
247 |
+
num_repeat = num_padding // size + int(num_padding % size != 0)
|
248 |
+
padding = np.tile(spec, num_repeat)
|
249 |
+
return np.concatenate((spec, padding))[:end]
|
250 |
+
|
251 |
+
|
252 |
+
def wav2mel(audio_path: str, width=2, top_db=40):
|
253 |
+
os.makedirs(TEMP_DIR, exist_ok=True)
|
254 |
+
try:
|
255 |
+
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
|
256 |
+
non_silents = librosa.effects.split(y, top_db=top_db)
|
257 |
+
y = np.concatenate([y[start:end] for start, end in non_silents])
|
258 |
+
total_frames = len(y)
|
259 |
+
if total_frames % (width * sr) != 0:
|
260 |
+
count = total_frames // (width * sr) + 1
|
261 |
+
y = circular_padding(y, count * width * sr)
|
262 |
+
|
263 |
+
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
|
264 |
+
log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
|
265 |
+
dur = librosa.get_duration(y=y, sr=sr)
|
266 |
+
total_frames = log_mel_spec.shape[1]
|
267 |
+
step = int(width * total_frames / dur)
|
268 |
+
count = int(total_frames / step)
|
269 |
+
begin = int(0.5 * (total_frames - count * step))
|
270 |
+
end = begin + step * count
|
271 |
+
for i in range(begin, end, step):
|
272 |
+
librosa.display.specshow(log_mel_spec[:, i : i + step])
|
273 |
+
plt.axis("off")
|
274 |
+
plt.savefig(
|
275 |
+
f"{TEMP_DIR}/{i}.jpg",
|
276 |
+
bbox_inches="tight",
|
277 |
+
pad_inches=0.0,
|
278 |
+
)
|
279 |
+
plt.close()
|
280 |
+
|
281 |
+
except Exception as e:
|
282 |
+
print(f"Error converting {audio_path} : {e}")
|
283 |
+
|
284 |
+
|
285 |
+
def wav2cqt(audio_path: str, width=2, top_db=40):
|
286 |
+
os.makedirs(TEMP_DIR, exist_ok=True)
|
287 |
+
try:
|
288 |
+
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
|
289 |
+
non_silents = librosa.effects.split(y, top_db=top_db)
|
290 |
+
y = np.concatenate([y[start:end] for start, end in non_silents])
|
291 |
+
total_frames = len(y)
|
292 |
+
if total_frames % (width * sr) != 0:
|
293 |
+
count = total_frames // (width * sr) + 1
|
294 |
+
y = circular_padding(y, count * width * sr)
|
295 |
+
|
296 |
+
cqt_spec = librosa.cqt(y=y, sr=sr)
|
297 |
+
log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
|
298 |
+
dur = librosa.get_duration(y=y, sr=sr)
|
299 |
+
total_frames = log_cqt_spec.shape[1]
|
300 |
+
step = int(width * total_frames / dur)
|
301 |
+
count = int(total_frames / step)
|
302 |
+
begin = int(0.5 * (total_frames - count * step))
|
303 |
+
end = begin + step * count
|
304 |
+
for i in range(begin, end, step):
|
305 |
+
librosa.display.specshow(log_cqt_spec[:, i : i + step])
|
306 |
+
plt.axis("off")
|
307 |
+
plt.savefig(
|
308 |
+
f"{TEMP_DIR}/{i}.jpg",
|
309 |
+
bbox_inches="tight",
|
310 |
+
pad_inches=0.0,
|
311 |
+
)
|
312 |
+
plt.close()
|
313 |
+
|
314 |
+
except Exception as e:
|
315 |
+
print(f"Error converting {audio_path} : {e}")
|
316 |
+
|
317 |
+
|
318 |
+
def wav2chroma(audio_path: str, width=2, top_db=40):
|
319 |
+
os.makedirs(TEMP_DIR, exist_ok=True)
|
320 |
+
try:
|
321 |
+
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
|
322 |
+
non_silents = librosa.effects.split(y, top_db=top_db)
|
323 |
+
y = np.concatenate([y[start:end] for start, end in non_silents])
|
324 |
+
total_frames = len(y)
|
325 |
+
if total_frames % (width * sr) != 0:
|
326 |
+
count = total_frames // (width * sr) + 1
|
327 |
+
y = circular_padding(y, count * width * sr)
|
328 |
+
|
329 |
+
chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
|
330 |
+
log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
|
331 |
+
dur = librosa.get_duration(y=y, sr=sr)
|
332 |
+
total_frames = log_chroma_spec.shape[1]
|
333 |
+
step = int(width * total_frames / dur)
|
334 |
+
count = int(total_frames / step)
|
335 |
+
begin = int(0.5 * (total_frames - count * step))
|
336 |
+
end = begin + step * count
|
337 |
+
for i in range(begin, end, step):
|
338 |
+
librosa.display.specshow(log_chroma_spec[:, i : i + step])
|
339 |
+
plt.axis("off")
|
340 |
+
plt.savefig(
|
341 |
+
f"{TEMP_DIR}/{i}.jpg",
|
342 |
+
bbox_inches="tight",
|
343 |
+
pad_inches=0.0,
|
344 |
+
)
|
345 |
+
plt.close()
|
346 |
+
|
347 |
+
except Exception as e:
|
348 |
+
print(f"Error converting {audio_path} : {e}")
|
349 |
+
|
350 |
+
|
351 |
+
def most_frequent_value(lst: list):
|
352 |
+
counter = Counter(lst)
|
353 |
+
max_count = max(counter.values())
|
354 |
+
for element, count in counter.items():
|
355 |
+
if count == max_count:
|
356 |
+
return element
|
357 |
+
|
358 |
+
return None
|
359 |
+
|
360 |
+
|
361 |
+
def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
|
362 |
+
if os.path.exists(folder_path):
|
363 |
+
shutil.rmtree(folder_path)
|
364 |
+
|
365 |
+
if not wav_path:
|
366 |
+
return None, "请输入音频 Please input an audio!"
|
367 |
+
|
368 |
+
try:
|
369 |
+
model = EvalNet(log_name, len(TRANSLATE)).model
|
370 |
+
except Exception as e:
|
371 |
+
return None, f"{e}"
|
372 |
+
|
373 |
+
spec = log_name.split("_")[-3]
|
374 |
+
eval("wav2%s" % spec)(wav_path)
|
375 |
+
jpgs = find_files(folder_path, ".jpg")
|
376 |
+
preds = []
|
377 |
+
for jpg in jpgs:
|
378 |
+
input = embed_img(jpg)
|
379 |
+
output: torch.Tensor = model(input)
|
380 |
+
preds.append(torch.max(output.data, 1)[1])
|
381 |
+
|
382 |
+
pred_id = most_frequent_value(preds)
|
383 |
+
return (
|
384 |
+
os.path.basename(wav_path),
|
385 |
+
f"{TRANSLATE[CLASSES[pred_id]][0]} ({TRANSLATE[CLASSES[pred_id]][1].capitalize()})",
|
386 |
+
)
|
387 |
+
|
388 |
+
|
389 |
+
if __name__ == "__main__":
|
390 |
+
warnings.filterwarnings("ignore")
|
391 |
+
models = get_modelist()
|
392 |
+
examples = []
|
393 |
+
example_wavs = find_files()
|
394 |
+
model_num = len(models)
|
395 |
+
for wav in example_wavs:
|
396 |
+
examples.append([wav, models[random.randint(0, model_num - 1)]])
|
397 |
+
|
398 |
+
with gr.Blocks() as demo:
|
399 |
+
gr.Interface(
|
400 |
+
fn=infer,
|
401 |
+
inputs=[
|
402 |
+
gr.Audio(label="上传录音 Upload a recording", type="filepath"),
|
403 |
+
gr.Dropdown(
|
404 |
+
choices=models, label="选择模型 Select a model", value=models[0]
|
405 |
+
),
|
406 |
+
],
|
407 |
+
outputs=[
|
408 |
+
gr.Textbox(label="音频文件名 Audio filename", show_copy_button=True),
|
409 |
+
gr.Textbox(
|
410 |
+
label="中国乐器识别 Chinese instrument recognition",
|
411 |
+
show_copy_button=True,
|
412 |
+
),
|
413 |
+
],
|
414 |
+
examples=examples,
|
415 |
+
cache_examples=False,
|
416 |
+
flagging_mode="never",
|
417 |
+
title="建议录音时长保持在 3s 左右<br>It is recommended to keep the recording length around 3s.",
|
418 |
+
)
|
419 |
+
|
420 |
+
gr.Markdown(
|
421 |
+
"""
|
422 |
+
# 引用 Cite
|
423 |
+
```bibtex
|
424 |
+
@dataset{zhaorui_liu_2021_5676893,
|
425 |
+
author = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
|
426 |
+
title = {CCMusic: an Open and Diverse Database for Chinese Music Information Retrieval Research},
|
427 |
+
month = {mar},
|
428 |
+
year = {2024},
|
429 |
+
publisher = {HuggingFace},
|
430 |
+
version = {1.2},
|
431 |
+
url = {https://huggingface.co/ccmusic-database}
|
432 |
+
}
|
433 |
+
```"""
|
434 |
+
)
|
435 |
+
|
436 |
+
demo.launch()
|
model.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torchvision.models as models
|
4 |
+
from modelscope.msdatasets import MsDataset
|
5 |
+
from utils import MODEL_DIR
|
6 |
+
|
7 |
+
|
8 |
+
class EvalNet:
|
9 |
+
model: nn.Module = None
|
10 |
+
m_type = "squeezenet"
|
11 |
+
input_size = 224
|
12 |
+
output_size = 512
|
13 |
+
|
14 |
+
def __init__(self, log_name: str, cls_num: int):
|
15 |
+
saved_model_path = f"{MODEL_DIR}/{log_name}/save.pt"
|
16 |
+
m_ver = "_".join(log_name.split("_")[:-3])
|
17 |
+
self.m_type, self.input_size = self._model_info(m_ver)
|
18 |
+
|
19 |
+
if not hasattr(models, m_ver):
|
20 |
+
raise Exception("Unsupported model.")
|
21 |
+
|
22 |
+
self.model = eval("models.%s()" % m_ver)
|
23 |
+
linear_output = self._set_outsize()
|
24 |
+
self._set_classifier(cls_num, linear_output)
|
25 |
+
checkpoint = torch.load(saved_model_path, map_location="cpu")
|
26 |
+
if torch.cuda.is_available():
|
27 |
+
checkpoint = torch.load(saved_model_path)
|
28 |
+
|
29 |
+
self.model.load_state_dict(checkpoint, False)
|
30 |
+
self.model.eval()
|
31 |
+
|
32 |
+
def _get_backbone(self, ver: str, backbone_list: list):
|
33 |
+
for bb in backbone_list:
|
34 |
+
if ver == bb["ver"]:
|
35 |
+
return bb
|
36 |
+
|
37 |
+
print("Backbone name not found, using default option - alexnet.")
|
38 |
+
return backbone_list[0]
|
39 |
+
|
40 |
+
def _model_info(self, m_ver: str):
|
41 |
+
backbone_list = MsDataset.load(
|
42 |
+
"monetjoe/cv_backbones",
|
43 |
+
split="v1",
|
44 |
+
)
|
45 |
+
backbone = self._get_backbone(m_ver, backbone_list)
|
46 |
+
m_type = str(backbone["type"])
|
47 |
+
input_size = int(backbone["input_size"])
|
48 |
+
return m_type, input_size
|
49 |
+
|
50 |
+
def _classifier(self, cls_num: int, output_size: int, linear_output: bool):
|
51 |
+
q = (1.0 * output_size / cls_num) ** 0.25
|
52 |
+
l1 = int(q * cls_num)
|
53 |
+
l2 = int(q * l1)
|
54 |
+
l3 = int(q * l2)
|
55 |
+
if linear_output:
|
56 |
+
return torch.nn.Sequential(
|
57 |
+
nn.Dropout(),
|
58 |
+
nn.Linear(output_size, l3),
|
59 |
+
nn.ReLU(inplace=True),
|
60 |
+
nn.Dropout(),
|
61 |
+
nn.Linear(l3, l2),
|
62 |
+
nn.ReLU(inplace=True),
|
63 |
+
nn.Dropout(),
|
64 |
+
nn.Linear(l2, l1),
|
65 |
+
nn.ReLU(inplace=True),
|
66 |
+
nn.Linear(l1, cls_num),
|
67 |
+
)
|
68 |
+
|
69 |
+
else:
|
70 |
+
return torch.nn.Sequential(
|
71 |
+
nn.Dropout(),
|
72 |
+
nn.Conv2d(output_size, l3, kernel_size=(1, 1), stride=(1, 1)),
|
73 |
+
nn.ReLU(inplace=True),
|
74 |
+
nn.AdaptiveAvgPool2d(output_size=(1, 1)),
|
75 |
+
nn.Flatten(),
|
76 |
+
nn.Linear(l3, l2),
|
77 |
+
nn.ReLU(inplace=True),
|
78 |
+
nn.Dropout(),
|
79 |
+
nn.Linear(l2, l1),
|
80 |
+
nn.ReLU(inplace=True),
|
81 |
+
nn.Linear(l1, cls_num),
|
82 |
+
)
|
83 |
+
|
84 |
+
def _set_outsize(self):
|
85 |
+
for name, module in self.model.named_modules():
|
86 |
+
if (
|
87 |
+
str(name).__contains__("classifier")
|
88 |
+
or str(name).__eq__("fc")
|
89 |
+
or str(name).__contains__("head")
|
90 |
+
or hasattr(module, "classifier")
|
91 |
+
):
|
92 |
+
if isinstance(module, torch.nn.Linear):
|
93 |
+
self.output_size = module.in_features
|
94 |
+
return True
|
95 |
+
|
96 |
+
if isinstance(module, torch.nn.Conv2d):
|
97 |
+
self.output_size = module.in_channels
|
98 |
+
return False
|
99 |
+
|
100 |
+
return False
|
101 |
+
|
102 |
+
def _set_classifier(self, cls_num: int, linear_output: bool):
|
103 |
+
if self.m_type == "convnext":
|
104 |
+
del self.model.classifier[2]
|
105 |
+
self.model.classifier = nn.Sequential(
|
106 |
+
*list(self.model.classifier)
|
107 |
+
+ list(self._classifier(cls_num, self.output_size, linear_output))
|
108 |
+
)
|
109 |
+
return
|
110 |
+
|
111 |
+
elif self.m_type == "maxvit":
|
112 |
+
del self.model.classifier[5]
|
113 |
+
self.model.classifier = nn.Sequential(
|
114 |
+
*list(self.model.classifier)
|
115 |
+
+ list(self._classifier(cls_num, self.output_size, linear_output))
|
116 |
+
)
|
117 |
+
return
|
118 |
+
|
119 |
+
if hasattr(self.model, "classifier"):
|
120 |
+
self.model.classifier = self._classifier(
|
121 |
+
cls_num, self.output_size, linear_output
|
122 |
+
)
|
123 |
+
return
|
124 |
+
|
125 |
+
elif hasattr(self.model, "fc"):
|
126 |
+
self.model.fc = self._classifier(cls_num, self.output_size, linear_output)
|
127 |
+
return
|
128 |
+
|
129 |
+
elif hasattr(self.model, "head"):
|
130 |
+
self.model.head = self._classifier(cls_num, self.output_size, linear_output)
|
131 |
+
return
|
132 |
+
|
133 |
+
self.model.heads.head = self._classifier(
|
134 |
+
cls_num, self.output_size, linear_output
|
135 |
+
)
|
136 |
+
|
137 |
+
def forward(self, x: torch.Tensor):
|
138 |
+
if torch.cuda.is_available():
|
139 |
+
x = x.cuda()
|
140 |
+
self.model = self.model.cuda()
|
141 |
+
|
142 |
+
if self.m_type == "googlenet":
|
143 |
+
return self.model(x)[0]
|
144 |
+
else:
|
145 |
+
return self.model(x)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
librosa
|
2 |
+
torch
|
3 |
+
matplotlib
|
4 |
+
torchvision
|
5 |
+
pillow
|
6 |
+
modelscope
|
utils.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torchvision.transforms as transforms
|
4 |
+
from modelscope import snapshot_download
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
MODEL_DIR = snapshot_download(
|
8 |
+
f"ccmusic-database/CTIS",
|
9 |
+
cache_dir=f"{os.getcwd()}/__pycache__",
|
10 |
+
)
|
11 |
+
TEMP_DIR = f"{os.getcwd()}/flagged"
|
12 |
+
|
13 |
+
|
14 |
+
def toCUDA(x):
|
15 |
+
if hasattr(x, "cuda"):
|
16 |
+
if torch.cuda.is_available():
|
17 |
+
return x.cuda()
|
18 |
+
|
19 |
+
return x
|
20 |
+
|
21 |
+
|
22 |
+
def find_files(folder_path=f"{MODEL_DIR}/examples", ext=".wav"):
|
23 |
+
wav_files = []
|
24 |
+
for root, _, files in os.walk(folder_path):
|
25 |
+
for file in files:
|
26 |
+
if file.endswith(ext):
|
27 |
+
file_path = os.path.join(root, file)
|
28 |
+
wav_files.append(file_path)
|
29 |
+
|
30 |
+
return wav_files
|
31 |
+
|
32 |
+
|
33 |
+
def get_modelist(model_dir=MODEL_DIR):
|
34 |
+
try:
|
35 |
+
entries = os.listdir(model_dir)
|
36 |
+
except OSError as e:
|
37 |
+
print(f"无法访问 {model_dir}: {e}")
|
38 |
+
return
|
39 |
+
|
40 |
+
# 遍历所有条目
|
41 |
+
output = []
|
42 |
+
for entry in entries:
|
43 |
+
# 获取完整路径
|
44 |
+
full_path = os.path.join(model_dir, entry)
|
45 |
+
# 跳过'.git'文件夹
|
46 |
+
if entry == ".git" or entry == "examples":
|
47 |
+
print(f"跳过 .git 或 examples 文件夹: {full_path}")
|
48 |
+
continue
|
49 |
+
|
50 |
+
# 检查条目是文件还是目录
|
51 |
+
if os.path.isdir(full_path):
|
52 |
+
# 打印目录路径
|
53 |
+
output.append(os.path.basename(full_path))
|
54 |
+
|
55 |
+
return output
|
56 |
+
|
57 |
+
|
58 |
+
def embed_img(img_path: str, input_size=224):
|
59 |
+
transform = transforms.Compose(
|
60 |
+
[
|
61 |
+
transforms.Resize([input_size, input_size]),
|
62 |
+
transforms.ToTensor(),
|
63 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
64 |
+
]
|
65 |
+
)
|
66 |
+
img = Image.open(img_path).convert("RGB")
|
67 |
+
return transform(img).unsqueeze(0)
|