|
Hugging Face's logo |
|
Hugging Face |
|
Search models, datasets, users... |
|
Models |
|
Datasets |
|
Spaces |
|
Posts |
|
Docs |
|
Solutions |
|
Pricing |
|
|
|
|
|
|
|
Spaces: |
|
|
|
Satyacoder |
|
/ |
|
vision_test |
|
|
|
|
|
like |
|
0 |
|
App |
|
Files |
|
Community |
|
vision_test |
|
/ |
|
app.py |
|
|
|
Satyacoder's picture |
|
Satyacoder |
|
Update app.py |
|
8602d39 |
|
5 months ago |
|
raw |
|
history |
|
blame |
|
contribute |
|
delete |
|
No virus |
|
1.72 kB |
|
from transformers import DetrImageProcessor, DetrForObjectDetection |
|
from transformers import BlipProcessor, BlipForConditionalGeneration |
|
import torch |
|
from PIL import Image |
|
import requests |
|
import gradio as gr |
|
|
|
box_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") |
|
box_model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") |
|
|
|
caption_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") |
|
caption_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") |
|
|
|
def predict_bounding_boxes(imageurl:str): |
|
try: |
|
response = requests.get(imageurl, stream=True) |
|
response.raise_for_status() |
|
|
|
image_data = Image.open(response.raw) |
|
inputs = box_processor(images=image_data, return_tensors="pt") |
|
outputs = box_model(**inputs) |
|
|
|
target_sizes = torch.tensor([image_data.size[::-1]]) |
|
results = box_processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.70)[0] |
|
|
|
detections = [{"score": score.item(), "label": box_model.config.id2label[label.item()], "box": box.tolist()} for score, label, box in zip(results["scores"], results["labels"], results["boxes"])] |
|
|
|
raw_image = image_data.convert('RGB') |
|
inputs = caption_processor(raw_image, return_tensors="pt") |
|
out = caption_model.generate(**inputs) |
|
label = caption_processor.decode(out[0], skip_special_tokens=True) |
|
return {"image label": label, "detections": detections} |
|
|
|
except Exception as e: |
|
|
|
return {"error": str(e)} |
|
|
|
app = gr.Interface(fn=predict_bounding_boxes, inputs="text", outputs="json") |
|
app.api = True |
|
app.launch() |
|
|