### 010125-daysoff-assistant-api import os import time import json import torch from api_docs_mck import daysoff_api_docs import chainlit as cl from langchain import hub from langchain.chains import LLMChain, APIChain from langchain_core.prompts import PromptTemplate from langchain_community.llms import HuggingFaceHub from langchain.memory.buffer import ConversationBufferMemory HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN") LANGCHAIN_API_KEY = os.environ.get("LANGCHAIN_API_KEY") HF_TOKEN = os.environ.get("HF_TOKEN") #os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:true" dtype = torch.float16 device = torch.device("cuda") daysoff_assistant_booking_template = """ You are a customer support assistant for Daysoff.no. Your expertise is retrieving booking information for a given booking ID (’bestillingsnummer’)" Chat History: {chat_history} Question: {question} Answer: """ daysoff_assistant_booking_prompt= PromptTemplate( input_variables=["chat_history", "question"], template=daysoff_assistant_booking_template ) api_url_template = """ Given the following API Documentation for Daysoff's official booking information API: {api_docs_mck} Your task is to construct the most efficient API URL to answer the user's question, ensuring the call is optimized to include only the necessary information. Question: {question} API URL: """ api_url_prompt = PromptTemplate(input_variables=['api_docs_mck', 'question'], template=api_url_template) api_response_template = """" With the API Documentation for Daysoff's official API: {api_docs_mck} and the specific user question: {question} in mind, and given this API URL: {api_url} for querying, here is the response from Daysoff's API: {api_response}. Please provide a summary that directly addresses the user's question, omitting technical details like response format, and focusing on delivering the answer with clarity and conciseness, as if a human customer service agent is providing this information. Adapt to user's language. By default, you speak Norwegian. Summary: """ api_response_prompt = PromptTemplate(input_variables=['api_docs_mck', 'question', 'api_url', 'api_response'], template=api_response_template) # --model, memory object, and llm_chain @cl.on_chat_start def setup_multiple_chains(): llm = HuggingFaceHub(repo_id="google/gemma-2-2b-it", temperature=0.7, huggingface_api_token=HUGGINGFACEHUB_API_TOKEN, device=device) conversation_memory = ConversationBufferMemory(memory_key="chat_history", max_len=200, return_messages=True, ) llm_chain = LLMChain(llm=llm, prompt=daysoff_assistant_booking_prompt, memory=conversation_memory ) cl.user_session.set("llm_chain", llm_chain) api_chain = APIChain.from_llm_and_api_docs_mck( llm=llm, api_docs_mck=daysoff_api_docs, api_url_prompt=api_url_prompt, api_response_prompt=api_response_prompt, verbose=True, limit_to_domains=None) cl.user_session.set("api_chain", api_chain) # --wrapper function around the @cl.on_message decorator; chain trigger(s) @cl.on_message async def handle_message(message: cl.Message): user_message = message.content.lower() llm_chain = cl.user_session.get("llm_chain") api_chain = cl.user_session.get("api_chain") if any(keyword in user_message for keyword in ["booking_id", "full_name", "amount", # + "bestillingsnummer", "checkin", "checkout" for api_docs "date", "address", "amount", "user_id"]): # --if any keywords in user_message, use api_chain response = await api_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()]) else: # --defaults to llm_chain4general queries response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()]) response_key = "output" if "output" in response else "text" await cl.Message(response.get(response_key, "")).send() if __name__ == '__main__': cl.launch()