Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import pipeline
|
4 |
+
from nemo.collections.asr.models import EncDecMultiTaskModel
|
5 |
+
from transformers import VitsTokenizer, VitsModel
|
6 |
+
|
7 |
+
# Load Canary ASR model
|
8 |
+
canary_model = EncDecMultiTaskModel.from_pretrained('nvidia/canary-1b')
|
9 |
+
decode_cfg = canary_model.cfg.decoding
|
10 |
+
decode_cfg.beam.beam_size = 1
|
11 |
+
canary_model.change_decoding_strategy(decode_cfg)
|
12 |
+
|
13 |
+
# Load Phi-3 Mini-128K-Instruct LLM model
|
14 |
+
phi_3_model_id = "microsoft/Phi-3-mini-128k-instruct"
|
15 |
+
phi_3_pipeline = pipeline("text-generation", model=phi_3_model_id, trust_remote_code=True)
|
16 |
+
|
17 |
+
# Load VITS TTS model
|
18 |
+
vits_tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng")
|
19 |
+
vits_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
|
20 |
+
|
21 |
+
def transcribe_audio(audio):
|
22 |
+
transcribed_text = canary_model.transcribe(audio, batch_size=16)
|
23 |
+
return transcribed_text
|
24 |
+
|
25 |
+
def generate_response(prompt):
|
26 |
+
response = phi_3_pipeline(prompt)[0]['generated_text']
|
27 |
+
return response
|
28 |
+
|
29 |
+
def synthesize_speech(text):
|
30 |
+
inputs = vits_tokenizer(text=text, return_tensors="pt")
|
31 |
+
with torch.no_grad():
|
32 |
+
outputs = vits_model(**inputs)
|
33 |
+
waveform = outputs.waveform[0]
|
34 |
+
return waveform
|
35 |
+
|
36 |
+
# Define Gradio interface
|
37 |
+
gr.Interface(
|
38 |
+
fn=[transcribe_audio, generate_response, synthesize_speech],
|
39 |
+
inputs=["audio", "text", "text"],
|
40 |
+
outputs=[gr.outputs.Textbox(label="Transcribed Text"),
|
41 |
+
gr.outputs.Textbox(label="Generated Response"),
|
42 |
+
gr.outputs.Audio(label="Synthesized Speech")]
|
43 |
+
).launch()
|