HarmonyView / app.py
byeongjun-park's picture
HarmonyView update
7355d35
raw
history blame
14.2 kB
from functools import partial
from PIL import Image
import numpy as np
import gradio as gr
import torch
import os
import fire
from omegaconf import OmegaConf
from ldm.models.diffusion.sync_dreamer import SyncDDIMSampler, SyncMultiviewDiffusion
from ldm.util import add_margin, instantiate_from_config
from sam_utils import sam_init, sam_out_nosave
import torch
_TITLE = '''HarmonyView: Harmonizing Consistency and Diversity in One-Image-to-3D'''
_DESCRIPTION = '''
<div>
<a style="display:inline-block" href="https://byeongjun-park.github.io/HarmonyView/"><img src="https://img.shields.io/badge/HarmonyView-Homepage-blue"></a>
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2312.15980"><img src="https://img.shields.io/badge/2312.15980-f9f7f7?logo="></a>
<a style="display:inline-block; margin-left: .5em" href='https://github.com/byeongjun-park/HarmonyView'><img src='https://img.shields.io/github/stars/byeongjun-park/HarmonyView?style=social' /></a>
</div>
Given a single-view image, HarmonyView is able to generate diverse and multiview-consistent images, resulting in creating plausible 3D contents with NeuS or NeRF </br>
Procedure: </br>
**Step 1**. Upload an image. ==> The foreground is masked out by SAM. </br>
**Step 2**. Select the input to HarmonyView (Input image or SAM output). ==> Then, we crop it as inputs. </br>
**Step 3**. Select "Elevation angle "and click "Run generation". ==> Generate multiview images. The **Elevation angle** is the elevation of the Input image. (This costs about 45s.) </br>
You may adjust the **Crop size** and **Elevation angle** to get a better result! <br>
To reconstruct a NeRF or a 3D mesh from the generated images, please refer to our [github repository](https://github.com/byeongjun-park/HarmonyView). <br>
We have heavily borrowed codes from [Syncdreamer](https://huggingface.co/spaces/liuyuan-pal/SyncDreamer), which is an our strong baseline.
'''
deployed = True
if deployed:
print(f"Is CUDA available: {torch.cuda.is_available()}")
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
class BackgroundRemoval:
def __init__(self, device='cuda'):
from carvekit.api.high import HiInterface
self.interface = HiInterface(
object_type="object", # Can be "object" or "hairs-like".
batch_size_seg=5,
batch_size_matting=1,
device=device,
seg_mask_size=640, # Use 640 for Tracer B7 and 320 for U2Net
matting_mask_size=2048,
trimap_prob_threshold=231,
trimap_dilation=30,
trimap_erosion_iters=5,
fp16=True,
)
@torch.no_grad()
def __call__(self, image):
# image: [H, W, 3] array in [0, 255].
image = self.interface([image])[0]
return image
def resize_inputs(original_image, sam_image, crop_size, background_removal):
image_input = original_image if background_removal == "Input image" else sam_image
if image_input is None: return None
alpha_np = np.asarray(image_input)[:, :, 3]
coords = np.stack(np.nonzero(alpha_np), 1)[:, (1, 0)]
min_x, min_y = np.min(coords, 0)
max_x, max_y = np.max(coords, 0)
ref_img_ = image_input.crop((min_x, min_y, max_x, max_y))
h, w = ref_img_.height, ref_img_.width
scale = crop_size / max(h, w)
h_, w_ = int(scale * h), int(scale * w)
ref_img_ = ref_img_.resize((w_, h_), resample=Image.BICUBIC)
results = add_margin(ref_img_, size=256)
return results
def generate(model, cfg_scale_1, cfg_scale_2, seed, image_input, elevation_input):
sample_num = 1
sample_steps = 50
batch_view_num = 16
if deployed:
assert isinstance(model, SyncMultiviewDiffusion)
seed=int(seed)
torch.random.manual_seed(seed)
np.random.seed(seed)
# prepare data
image_input = np.asarray(image_input)
image_input = image_input.astype(np.float32) / 255.0
alpha_values = image_input[:,:, 3:]
image_input[:, :, :3] = alpha_values * image_input[:,:, :3] + 1 - alpha_values # white background
image_input = image_input[:, :, :3] * 2.0 - 1.0
image_input = torch.from_numpy(image_input.astype(np.float32))
elevation_input = torch.from_numpy(np.asarray([np.deg2rad(elevation_input)], np.float32))
data = {"input_image": image_input, "input_elevation": elevation_input}
for k, v in data.items():
if deployed:
data[k] = v.unsqueeze(0).cuda()
else:
data[k] = v.unsqueeze(0)
data[k] = torch.repeat_interleave(data[k], sample_num, dim=0)
if deployed:
sampler = SyncDDIMSampler(model, sample_steps)
x_sample = model.sample(sampler, data, (cfg_scale_1, cfg_scale_2), batch_view_num)
else:
x_sample = torch.zeros(sample_num, 16, 3, 256, 256)
B, N, _, H, W = x_sample.shape
x_sample = (torch.clamp(x_sample,max=1.0,min=-1.0) + 1) * 0.5
x_sample = x_sample.permute(0,1,3,4,2).cpu().numpy() * 255
x_sample = x_sample.astype(np.uint8)
results = []
for bi in range(B):
results.append(np.concatenate([x_sample[bi,ni] for ni in range(N)], 1))
results = np.concatenate(results, 0)
return Image.fromarray(results)
else:
return Image.fromarray(np.zeros([sample_num*256,16*256,3],np.uint8))
def sam_predict(predictor, removal, raw_im):
if raw_im is None: return None
if deployed:
raw_im.thumbnail([512, 512], Image.Resampling.LANCZOS)
image_nobg = removal(raw_im.convert('RGB'))
arr = np.asarray(image_nobg)[:, :, -1]
x_nonzero = np.nonzero(arr.sum(axis=0))
y_nonzero = np.nonzero(arr.sum(axis=1))
x_min = int(x_nonzero[0].min())
y_min = int(y_nonzero[0].min())
x_max = int(x_nonzero[0].max())
y_max = int(y_nonzero[0].max())
# image_nobg.save('./nobg.png')
image_nobg.thumbnail([512, 512], Image.Resampling.LANCZOS)
image_sam = sam_out_nosave(predictor, image_nobg.convert("RGB"), (x_min, y_min, x_max, y_max))
# imsave('./mask.png', np.asarray(image_sam)[:,:,3]*255)
image_sam = np.asarray(image_sam, np.float32) / 255
out_mask = image_sam[:, :, 3:]
out_rgb = image_sam[:, :, :3] * out_mask + 1 - out_mask
out_img = (np.concatenate([out_rgb, out_mask], 2) * 255).astype(np.uint8)
image_sam = Image.fromarray(out_img, mode='RGBA')
# image_sam.save('./output.png')
torch.cuda.empty_cache()
return image_sam
else:
return raw_im
def run_demo():
# device = f"cuda:0" if torch.cuda.is_available() else "cpu"
# models = None # init_model(device, os.path.join(code_dir, ckpt))
cfg = 'configs/syncdreamer.yaml'
ckpt = 'ckpt/syncdreamer-pretrain.ckpt'
config = OmegaConf.load(cfg)
# model = None
if deployed:
model = instantiate_from_config(config.model)
print(f'loading model from {ckpt} ...')
ckpt = torch.load(ckpt,map_location='cpu')
model.load_state_dict(ckpt['state_dict'], strict=True)
model = model.cuda().eval()
del ckpt
mask_predictor = sam_init()
removal = BackgroundRemoval()
else:
model = None
mask_predictor = None
removal = None
# NOTE: Examples must match inputs
examples_full = [
['hf_demo/examples/dragon.png',30,200,"Input image"],
['hf_demo/examples/drum_kids.png',15,240,"Input image"],
['hf_demo/examples/table.png',30,200,"Input image"],
['hf_demo/examples/panda_back.png', 15, 240, "SAM output"],
['hf_demo/examples/boxer_toy.png', 30, 220, "SAM output"],
['hf_demo/examples/rose.png',30,200,"Input image"],
['hf_demo/examples/monkey.png', 30, 200, "SAM output"],
['hf_demo/examples/forest.png',30,200,"SAM output"],
['hf_demo/examples/flower.png',0,200,"SAM output"],
['hf_demo/examples/teapot.png',20,200,"SAM output"],
]
image_block = gr.Image(type='pil', image_mode='RGBA', height=256, label='Input image', tool=None, interactive=True)
elevation = gr.Slider(-10, 40, 30, step=5, label='Elevation angle', interactive=True)
crop_size = gr.Slider(120, 240, 200, step=10, label='Crop size', interactive=True)
background_removal = gr.Radio(["Input image", "SAM output"], value=["SAM output"], label="Input to HarmonyView", info="Which image do you want for the input to HarmonyView?")
# Compose demo layout & data flow.
with gr.Blocks(title=_TITLE, css="hf_demo/style.css") as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
with gr.Row(variant='panel'):
with gr.Column(scale=1.2):
gr.Examples(
examples=examples_full, # NOTE: elements must match inputs list!
inputs=[image_block, elevation, crop_size, background_removal],
outputs=[image_block, elevation, crop_size, background_removal],
cache_examples=False,
label='Examples (click one of the images below to start)',
examples_per_page=5,
)
with gr.Column(scale=0.8):
image_block.render()
crop_size.render()
fig0 = gr.Image(value=Image.open('assets/crop_size.jpg'), type='pil', image_mode='RGB', height=256, show_label=False, tool=None, interactive=False)
with gr.Column(scale=0.8):
sam_block = gr.Image(type='pil', image_mode='RGBA', label="SAM output", height=256, interactive=False)
# crop_btn = gr.Button('Crop it', variant='primary', interactive=True)
elevation.render()
fig1 = gr.Image(value=Image.open('assets/elevation.jpg'), type='pil', image_mode='RGB', height=256, show_label=False, tool=None, interactive=False)
with gr.Column(scale=0.8):
input_block = gr.Image(type='pil', image_mode='RGBA', label="Input to HarmonyView", height=256, interactive=False)
background_removal.render()
with gr.Accordion('Advanced options', open=False):
cfg_scale_1 = gr.Slider(1.0, 5.0, 2.0, step=0.1, label='Classifier free guidance 1', info='How consistent to be with the Input image', interactive=True)
cfg_scale_2 = gr.Slider(0.5, 1.5, 1.0, step=0.1, label='Classifier free guidance 2', info='How diverse a novel view to create', interactive=True)
seed = gr.Number(6033, label='Random seed', interactive=True)
run_btn = gr.Button('Run generation', variant='primary', interactive=True)
output_block = gr.Image(type='pil', image_mode='RGB', label="Outputs of HarmonyView", height=256, interactive=False)
image_block.change(fn=partial(sam_predict, mask_predictor, removal), inputs=[image_block], outputs=[sam_block], queue=True)
background_removal.change(fn=resize_inputs, inputs=[image_block, sam_block, crop_size, background_removal], outputs=[input_block], queue=True)
crop_size.change(fn=resize_inputs, inputs=[image_block, sam_block, crop_size, background_removal], outputs=[input_block], queue=True)
run_btn.click(partial(generate, model), inputs=[cfg_scale_1, cfg_scale_2, seed, input_block, elevation], outputs=[output_block], queue=True)
demo.queue().launch(share=False, max_threads=80) # auth=("admin", os.environ['PASSWD'])
if __name__=="__main__":
fire.Fire(run_demo)