Update app.py
Browse files
app.py
CHANGED
@@ -29,23 +29,23 @@ def process(action, base_model_name, ft_model_name, dataset_name, system_prompt,
|
|
29 |
def fine_tune_model(base_model_name, dataset_name):
|
30 |
# Load dataset
|
31 |
|
32 |
-
dataset = load_dataset(dataset_name)
|
33 |
|
34 |
-
print("### Dataset")
|
35 |
-
print(dataset)
|
36 |
-
print("### Example")
|
37 |
-
print(dataset["train"][:1])
|
38 |
-
print("###")
|
39 |
|
40 |
# Load model
|
41 |
|
42 |
-
model, tokenizer = load_model(base_model_name)
|
43 |
|
44 |
-
print("### Model")
|
45 |
-
print(model)
|
46 |
-
print("### Tokenizer")
|
47 |
-
print(tokenizer)
|
48 |
-
print("###")
|
49 |
|
50 |
# Pre-process dataset
|
51 |
|
@@ -53,26 +53,26 @@ def fine_tune_model(base_model_name, dataset_name):
|
|
53 |
model_inputs = tokenizer(examples["sql_prompt"], text_target=examples["sql"], max_length=512, padding="max_length", truncation=True)
|
54 |
return model_inputs
|
55 |
|
56 |
-
dataset = dataset.map(preprocess, batched=True)
|
57 |
|
58 |
-
print("### Pre-processed dataset")
|
59 |
-
print(dataset)
|
60 |
-
print("### Example")
|
61 |
-
print(dataset["train"][:1])
|
62 |
-
print("###")
|
63 |
|
64 |
# Split dataset into training and validation sets
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
train_dataset = dataset["train"].shuffle(seed=42).select(range(1000))
|
69 |
-
test_dataset = dataset["test"].shuffle(seed=42).select(range(100))
|
70 |
|
71 |
-
print("### Training dataset")
|
72 |
-
print(train_dataset)
|
73 |
-
print("### Validation dataset")
|
74 |
-
print(test_dataset)
|
75 |
-
print("###")
|
76 |
|
77 |
# Configure training arguments
|
78 |
|
@@ -102,13 +102,13 @@ def fine_tune_model(base_model_name, dataset_name):
|
|
102 |
|
103 |
# Create trainer
|
104 |
|
105 |
-
trainer = Seq2SeqTrainer(
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
)
|
112 |
|
113 |
# Train model
|
114 |
|
|
|
29 |
def fine_tune_model(base_model_name, dataset_name):
|
30 |
# Load dataset
|
31 |
|
32 |
+
#dataset = load_dataset(dataset_name)
|
33 |
|
34 |
+
#print("### Dataset")
|
35 |
+
#print(dataset)
|
36 |
+
#print("### Example")
|
37 |
+
#print(dataset["train"][:1])
|
38 |
+
#print("###")
|
39 |
|
40 |
# Load model
|
41 |
|
42 |
+
#model, tokenizer = load_model(base_model_name)
|
43 |
|
44 |
+
#print("### Model")
|
45 |
+
#print(model)
|
46 |
+
#print("### Tokenizer")
|
47 |
+
#print(tokenizer)
|
48 |
+
#print("###")
|
49 |
|
50 |
# Pre-process dataset
|
51 |
|
|
|
53 |
model_inputs = tokenizer(examples["sql_prompt"], text_target=examples["sql"], max_length=512, padding="max_length", truncation=True)
|
54 |
return model_inputs
|
55 |
|
56 |
+
#dataset = dataset.map(preprocess, batched=True)
|
57 |
|
58 |
+
#print("### Pre-processed dataset")
|
59 |
+
#print(dataset)
|
60 |
+
#print("### Example")
|
61 |
+
#print(dataset["train"][:1])
|
62 |
+
#print("###")
|
63 |
|
64 |
# Split dataset into training and validation sets
|
65 |
|
66 |
+
##train_dataset = dataset["train"]
|
67 |
+
##test_dataset = dataset["test"]
|
68 |
+
#train_dataset = dataset["train"].shuffle(seed=42).select(range(1000))
|
69 |
+
#test_dataset = dataset["test"].shuffle(seed=42).select(range(100))
|
70 |
|
71 |
+
#print("### Training dataset")
|
72 |
+
#print(train_dataset)
|
73 |
+
#print("### Validation dataset")
|
74 |
+
#print(test_dataset)
|
75 |
+
#print("###")
|
76 |
|
77 |
# Configure training arguments
|
78 |
|
|
|
102 |
|
103 |
# Create trainer
|
104 |
|
105 |
+
#trainer = Seq2SeqTrainer(
|
106 |
+
# model=model,
|
107 |
+
# args=training_args,
|
108 |
+
# train_dataset=train_dataset,
|
109 |
+
# eval_dataset=test_dataset,
|
110 |
+
# #compute_metrics=lambda pred: {"accuracy": torch.sum(pred.label_ids == pred.predictions.argmax(-1))},
|
111 |
+
#)
|
112 |
|
113 |
# Train model
|
114 |
|