import os, threading import gradio as gr from transformers import pipeline lock = threading.Lock() pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") def exec(input): with lock: out = pipe(input) return out[0]["generated_text"] demo = gr.Interface(exec, inputs=gr.Image(type="pil", value="https://raw.githubusercontent.com/bstraehle/ai-ml-dl/main/hugging-face/hugging-face/beach.jpg"), outputs=[gr.Textbox(label = "output", value=os.environ["OUTPUT"])], description=os.environ["DESCRIPTION"]) demo.launch()