import streamlit as st import torch # we use PyTorch: https://pytorch.org import torch.nn as nn import torch.nn.functional as F # model hyperparameters batch_size = 32 block_size = 128 max_iters = 5000 eval_interval = 500 learning_rate = 3e-4 device = 'cuda' if torch.cuda.is_available() else 'cpu' eval_iters = 200 n_embed = 256 n_heads = 8 n_layers = 6 dropout = 0.2 # ------------------------------------------------- # model architecture class AttentionHead(nn.Module): """a single head of self attention""" def __init__(self, head_size): super().__init__() self.key = nn.Linear(n_embed, head_size, bias=False) self.query = nn.Linear(n_embed, head_size, bias=False) self.value = nn.Linear(n_embed, head_size, bias=False) self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size))) self.dropout = nn.Dropout(dropout) def forward(self, x): B, T, C = x.shape K = self.key(x) # (B, T, C) Q = self.query(x) # (B, T, C) wei = Q @ K.transpose(-2,-1) * C**-0.5 # (B, T, C) @ (B, H, C) -> (B, T, T) wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) wei = F.softmax(wei, dim=-1) wei = self.dropout(wei) V = self.value(x) # (B, T, C) out = wei @ V # (B, T, T) @ (B, T, C) -> (B, T, C) return out class MultiHeadAttention(nn.Module): """a multi-head self attention layer""" def __init__(self, n_heads, head_size): super().__init__() self.heads = nn.ModuleList([AttentionHead(head_size) for _ in range(n_heads)]) self.fc = nn.Linear(head_size * n_heads, n_embed) self.dropout = nn.Dropout(dropout) def forward(self, x): out = torch.cat([h(x) for h in self.heads], dim=-1) # (B, T, n_heads*C) out = self.fc(out) # (B, T, C) out = self.dropout(out) return out class FeedForward(nn.Module): def __init__(self, n_hidden): super().__init__() self.net = nn.Sequential( nn.Linear(n_embed, n_hidden), nn.ReLU(), nn.Linear(n_hidden, n_embed), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Block(nn.Module): def __init__(self, n_embed, n_heads): super().__init__() self.sa_heads = MultiHeadAttention(n_heads, n_embed // n_heads) self.ffwd = FeedForward(n_embed*4) self.ln1 = nn.LayerNorm(n_embed) self.ln2 = nn.LayerNorm(n_embed) def forward(self, x): x = x + self.sa_heads(self.ln1(x)) # [batch_size, block_size, n_embed] x = x + self.ffwd(self.ln2(x)) # [batch_size, block_size, n_embed] return x class BigramModel(nn.Module): def __init__(self): super().__init__() self.token_embedding_table = nn.Embedding(vocab_size, n_embed) self.position_embedding_table = nn.Embedding(block_size, n_embed) self.blocks = nn.Sequential(*[Block(n_embed, n_heads) for _ in range(n_layers)]) self.ln_f = nn.LayerNorm(n_embed) self.lm_head = nn.Linear(n_embed, vocab_size) def forward(self, idx, targets=None): # idx and target are both [batch_size, block_size] B, T = idx.shape tok_emb = self.token_embedding_table(idx) # [batch_size, block_size, n_embed] pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # [block_size, n_embed] x = tok_emb + pos_emb # [batch_size, block_size, n_embed] x = self.blocks(x) x = self.ln_f(x) logits = self.lm_head(x) # [batch_size, block_size, vocab_size] if targets is None: loss = None else: B, T, C = logits.shape logits = logits.view(B*T, C) targets = targets.view(B*T) loss = F.cross_entropy(logits, targets) return logits, loss def generate(self, idx, max_new_tokens=100): # idx is (B, T) for _ in range(max_new_tokens): # get the last block_size tokens idx_cond = idx[:, -block_size:] # (B, T) # get the predictions logits, _ = self(idx_cond) # focus only on the last time step logits = logits[:, -1, :] # becomes (B, C) # apply softmax to get probabilities probs = F.softmax(logits, dim=1) # (B, C) # sample from the distribution idx_next = torch.multinomial(probs, num_samples=1) # (B, 1) # append sampled index to the running sequence idx = torch.cat((idx, idx_next), dim=1) # (B, T+1) return idx # ---------------------------------------------------------------- # helpers chars = list("\n !$&',-.3:;?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz") stoi = { ch:i for i,ch in enumerate(chars) } itos = { i:ch for i,ch in enumerate(chars) } encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string # ---------------------------------------------------------------- # load model model = torch.load('complete-model.pt', map_location=device) # inference st.markdown('## This is a simple lm for generating text in Skakespeareian style') st.markdown('### Generation will be slow. Please be patient :)') slider_value = st.slider('Amount of text to generate', min_value=100, max_value=2000, value=200, step=5) if st.button('Generate text'): context = torch.zeros((1, 1), dtype=torch.long, device=device) text = model.generate(context, max_new_tokens=slider_value)[0].tolist() st.text(decode(text))