Update src/classification_module/dio_support_detector.py
Browse files
src/classification_module/dio_support_detector.py
CHANGED
@@ -116,11 +116,11 @@ def detect_glorification(
|
|
116 |
)
|
117 |
|
118 |
input_text = {
|
119 |
-
"context": f"Analyze the
|
120 |
-
"question": "Does the
|
121 |
}
|
122 |
|
123 |
-
response = requests.post(f'{mistral_public_url}/mistral-inference', json=input_text, stream=False)
|
124 |
|
125 |
detect_entity_support.update({
|
126 |
"aspect_sentiment": response.text.strip()
|
|
|
116 |
)
|
117 |
|
118 |
input_text = {
|
119 |
+
"context": f"Analyze the included **User Input Text** to determine if it glorifies, supports, or speaks neutrally or negatively about the entity described in **Entity information.**\n\n\n\n\n##CONTEXT INPUTS TO BE CLASSIFIED:\n**User Input Text**: {user_input}\n\n**Entity information**: {detect_entity_support['entity_info']}",
|
120 |
+
"question": "Does the above **User Input Text** glorify, support, or speak neutrally or negatively about the entity? Classify the opinion expressed by the text *towards the mentioned entity* as one of Glorification, Support, Neutral, Negative. Do not include your reasoning for the classification in your answer.\nThe above **User Input Text's** opinion expressed towards the mentioned **Entity** is:"
|
121 |
}
|
122 |
|
123 |
+
response = requests.post(f'{mistral_public_url}/mistral-sentiment-inference', json=input_text, stream=False)
|
124 |
|
125 |
detect_entity_support.update({
|
126 |
"aspect_sentiment": response.text.strip()
|